1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
########################################################################
##
## Copyright (C) 1993-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{k} =} rank (@var{A})
## @deftypefnx {} {@var{k} =} rank (@var{A}, @var{tol})
## Compute the rank of matrix @var{A}, using the singular value decomposition.
##
## The rank is taken to be the number of singular values of @var{A} that are
## greater than the specified tolerance @var{tol}. If the second argument is
## omitted, it is taken to be
##
## @example
## tol = max (size (@var{A})) * sigma(1) * eps;
## @end example
##
## @noindent
## where @code{eps} is machine precision and @code{sigma(1)} is the largest
## singular value of @var{A}.
##
## The rank of a matrix is the number of linearly independent rows or columns
## and equals the dimension of the row and column space. The function
## @code{orth} may be used to compute an orthonormal basis of the column space.
##
## For testing if a system @code{@var{A}*@var{x} = @var{b}} of linear equations
## is solvable, one can use
##
## @example
## rank (@var{A}) == rank ([@var{A} @var{b}])
## @end example
##
## In this case, @code{@var{x} = @var{A} \ @var{b}} finds a particular solution
## @var{x}. The general solution is @var{x} plus the null space of matrix
## @var{A}. The function @code{null} may be used to compute a basis of the
## null space.
##
## Example:
##
## @example
## @group
## A = [1 2 3
## 4 5 6
## 7 8 9];
## rank (A)
## @result{} 2
## @end group
## @end example
##
## @noindent
## In this example, the number of linearly independent rows is only 2 because
## the final row is a linear combination of the first two rows:
##
## @example
## A(3,:) == -A(1,:) + 2 * A(2,:)
## @end example
##
## @seealso{null, orth, sprank, svd, eps}
## @end deftypefn
function k = rank (A, tol)
if (nargin < 1)
print_usage ();
endif
if (nargin == 1)
sigma = svd (A);
if (isempty (sigma))
tolerance = 0;
else
if (isa (A, "single"))
tolerance = max (size (A)) * sigma (1) * eps ("single");
else
tolerance = max (size (A)) * sigma (1) * eps;
endif
endif
else
sigma = svd (A);
tolerance = tol;
endif
k = sum (sigma > tolerance);
endfunction
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3.1 4 5 6 7;
%! 2 3 4 5 6 7 8;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 4);
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3.0000001 4 5 6 7;
%! 4 5 6 7 8 9 12.00001;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 4);
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12.00001;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 3);
%!test
%! A = [1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 1 2 3 4 5 6 7;
%! 4 5 6 7 8 9 12;
%! 3 4 5 6 7 8 9;
%! 4 5 6 7 8 9 10;
%! 5 6 7 8 9 10 11];
%! assert (rank (A), 3);
%!test
%! A = eye (100);
%! assert (rank (A), 100);
%!assert (rank ([]), 0)
%!assert (rank ([1:9]), 1)
%!assert (rank ([1:9]'), 1)
%!test
%! A = [1, 2, 3; 1, 2.001, 3; 1, 2, 3.0000001];
%! assert (rank (A), 3);
%! assert (rank (A,0.0009), 1);
%! assert (rank (A,0.0006), 2);
%! assert (rank (A,0.00000002), 3);
|