1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{r} =} rref (@var{A})
## @deftypefnx {} {@var{r} =} rref (@var{A}, @var{tol})
## @deftypefnx {} {[@var{r}, @var{k}] =} rref (@dots{})
## Return the reduced row echelon form of @var{A}.
##
## @var{tol} defaults to
## @code{eps * max (size (@var{A})) * norm (@var{A}, inf)}.
##
## The optional return argument @var{k} contains the vector of
## "bound variables", which are those columns on which elimination has been
## performed.
##
## @end deftypefn
function [A, k] = rref (A, tol)
if (nargin < 1)
print_usage ();
endif
if (ndims (A) > 2)
error ("rref: A must be a 2-dimensional matrix");
endif
[rows, cols] = size (A);
if (nargin < 2)
if (isa (A, "single"))
tol = eps ("single") * max (rows, cols) * norm (A, inf ("single"));
else
tol = eps * max (rows, cols) * norm (A, inf);
endif
endif
used = zeros (1, cols);
r = 1;
for c = 1:cols
## Find the pivot row
[m, pivot] = max (abs (A(r:rows,c)));
pivot = r + pivot - 1;
if (m <= tol)
## Skip column c, making sure the approximately zero terms are
## actually zero.
A(r:rows, c) = zeros (rows-r+1, 1);
else
## keep track of bound variables
used(1, c) = 1;
## Swap current row and pivot row
A([pivot, r], c:cols) = A([r, pivot], c:cols);
## Normalize pivot row
A(r, c:cols) = A(r, c:cols) / A(r, c);
## Eliminate the current column
ridx = [1:r-1, r+1:rows];
A(ridx, c:cols) = A(ridx, c:cols) - A(ridx, c) * A(r, c:cols);
## Check if done
if (r++ == rows)
break;
endif
endif
endfor
if (nargout > 1)
k = find (used);
endif
endfunction
%!test
%! a = [1];
%! [r k] = rref (a);
%! assert (r, [1], 2e-8);
%! assert (k, [1], 2e-8);
%!test
%! a = [1 3; 4 5];
%! [r k] = rref (a);
%! assert (rank (a), rank (r), 2e-8);
%! assert (r, eye (2), 2e-8);
%! assert (k == [1, 2] || k == [2, 1]);
%!test
%! a = [1 3; 4 5; 7 9];
%! [r k] = rref (a);
%! assert (rank (a), rank (r), 2e-8);
%! assert (r, eye (3)(:,1:2), 2e-8);
%! assert (k, [1 2], 2e-8);
%!test
%! a = [1 2 3; 2 4 6; 7 2 0];
%! [r k] = rref (a);
%! assert (rank (a), rank (r), 2e-8);
%! assert (r, [1 0 (3-7/2); 0 1 (7/4); 0 0 0], 2e-8);
%! assert (k, [1 2], 2e-8);
%!test
%! a = [1 2 1; 2 4 2.01; 2 4 2.1];
%! tol = 0.02;
%! [r k] = rref (a, tol);
%! assert (rank (a, tol), rank (r, tol), 2e-8);
%! tol = 0.2;
%! [r k] = rref (a, tol);
%! assert (rank (a, tol), rank (r, tol), 2e-8);
## Test input validation
%!error <Invalid call> rref ()
|