1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
########################################################################
##
## Copyright (C) 2022-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{C} =} tensorprod (@var{A}, @var{B}, @var{dimA}, @var{dimB})
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B}, @var{dim})
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B})
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B}, "all")
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B}, @dots{}, "NumDimensionsA", @var{value})
## Compute the tensor product between numeric tensors @var{A} and @var{B}.
##
## The dimensions of @var{A} and @var{B} that are contracted are defined by
## @var{dimA} and @var{dimB}, respectively. @var{dimA} and @var{dimB} are
## scalars or equal length vectors that define the dimensions to match up.
## The matched dimensions of @var{A} and @var{B} must have the same number of
## elements.
##
## When only @var{dim} is used, it is equivalent to
## @code{@var{dimA} = @var{dimB} = @var{dim}}.
##
## When no dimensions are specified, @code{@var{dimA} = @var{dimB} = []}. This
## computes the outer product between @var{A} and @var{B}.
##
## Using the @qcode{"all"} option results in the inner product between @var{A}
## and @var{B}. This requires @code{size (@var{A}) == size (@var{B})}.
##
## Use the property-value pair with the property name
## @nospell{@qcode{"NumDimensionsA"}} when @var{A} has trailing singleton
## dimensions that should be transferred to @var{C}. The specified @var{value}
## should be the total number of dimensions of @var{A}.
##
## @sc{matlab} Compatibility: Octave does not currently support the
## @qcode{"@var{property_name}=@var{value}"} syntax for the
## @nospell{@qcode{"NumDimensionsA"}} parameter.
##
## @seealso{kron, dot, mtimes}
## @end deftypefn
function C = tensorprod (A, B, varargin)
## FIXME: shortcut code paths could be added for trivial cases, such as if
## either A or B are a scalars, null, identity tensors, etc.
if (nargin < 2 || nargin > 6)
print_usage ();
endif
## Check that A and B are single or double
if (! isfloat (A))
error ("tensorprod: A must be a single or double precision array");
endif
if (! isfloat (B))
error ("tensorprod: B must be a single or double precision array");
endif
## Check for misplaced NumDimensionsA property
NumDimensionsA = 0;
if (nargin > 2)
if (strcmpi (varargin{end}, "NumDimensionsA"))
error ("tensorprod: a value for the NumDimensionsA property must be provided");
elseif (strncmpi (arg = inputname (nargin, false), "NumDimensionsA", 13))
error ("tensorprod: NumDimensionsA=VALUE syntax is unsupported. Use syntax 'NumDimensionsA', VALUE");
endif
endif
## Check for NumDimensionsA property
if (nargin > 3)
if (strcmpi (varargin{end-1}, "NumDimensionsA"))
NumDimensionsA = varargin{end};
if (! (isnumeric (NumDimensionsA) && isscalar (NumDimensionsA)))
error ("tensorprod: value for NumDimensionsA must be a numeric scalar");
elseif (! isindex (NumDimensionsA))
error ("tensorprod: value for NumDimensionsA must be a positive integer");
endif
nargin = nargin - 2;
endif
endif
ndimargs = nargin - 2;
## Set dimA and dimB
if (ndimargs == 0)
## Calling without dimension arguments
dimA = [];
dimB = [];
elseif (ndimargs == 1)
## Calling with dim or "all" option
if (isnumeric (varargin{1}))
if (! (isvector (varargin{1}) || isnull (varargin{1})))
error ("tensorprod: DIM must be a numeric vector of integers or []");
endif
## Calling with dim
dimA = varargin{1}(:).'; # Reshape to row vector
elseif (ischar (varargin{1}))
if (strcmpi (varargin{1}, "all"))
if (! size_equal (A, B))
error ("tensorprod: size of A and B must be identical when using the 'all' option");
endif
else
error ("tensorprod: unknown option '%s'", varargin{1});
endif
## Calling with "all" option
dimA = 1:ndims(A);
else
error ("tensorprod: third argument must be a numeric vector of integers, [], or 'all'");
endif
dimB = dimA;
elseif (ndimargs == 2)
## Calling with dimA and dimB
if (! (isnumeric (varargin{1})
&& (isvector (varargin{1}) || isnull (varargin{1}))))
error("tensorprod: DIMA must be a numeric vector of integers or []");
endif
if (! (isnumeric (varargin{2})
&& (isvector (varargin{2}) || isnull (varargin{2}))))
error ("tensorprod: DIMB must be a numeric vector of integers or []");
endif
if (numel (varargin{1}) != numel (varargin{2}))
error ("tensorprod: an equal number of dimensions must be matched for A and B");
endif
dimA = varargin{1}(:).'; # Reshape to row vector
dimB = varargin{2}(:).';
else
## Something is wrong - try to find the error
for i = 1:ndimargs
if (ischar (varargin{i}))
if (strcmpi (varargin{i}, "NumDimensionsA"))
error ("tensorprod: misplaced 'NumDimensionsA' option");
elseif (strcmpi (varargin{i}, "all"))
error ("tensorprod: misplaced 'all' option");
else
error ("tensorprod: unknown option '%s'", varargin{i});
endif
elseif (! isnumeric (varargin{i}))
error ("tensorprod: optional arguments must be numeric vectors of integers, [], 'all', or 'NumDimensionsA'");
endif
endfor
error ("tensorprod: too many dimension inputs given");
endif
## Check that dimensions are positive integers ([] will also pass)
if (! isindex (dimA) || ! isindex (dimB))
error ("tensorprod: dimensions must be positive integers");
endif
## Check that the length of matched dimensions are equal
if (any (size (A, dimA) != size (B, dimB)))
error ("tensorprod: matched dimensions of A and B must have the same lengths");
endif
## Find size and ndims of A and B
ndimsA = max ([ndims(A), max(dimA)]);
sizeA = size (A, 1:ndimsA);
ndimsB = max ([ndims(B), max(dimB)]);
sizeB = size (B, 1:ndimsB);
## Take NumDimensionsA property into account
if (NumDimensionsA)
if (NumDimensionsA < ndimsA)
if (ndimargs == 1)
error ("tensorprod: highest dimension of dim must be less than or equal to NumDimensionsA");
elseif (ndimargs == 2)
error ("tensorprod: highest dimension of dimA must be less than or equal to NumDimensionsA");
else
error ("tensorprod: NumDimensionsA cannot be smaller than the number of dimensions of A");
endif
elseif (NumDimensionsA > ndimsA)
sizeA = [sizeA, ones(1, NumDimensionsA - ndimsA)];
ndimsA = NumDimensionsA;
endif
endif
## Interchange the dimension to sum over the end of A and the front of B
## Prepare for A
remainDimA = [1:ndimsA];
remainDimA(dimA) = []; # Dimensions of A to keep
newDimOrderA = [remainDimA, dimA]; # New dim order [to_keep, to_contract]
newSizeA = [prod(sizeA(remainDimA)), prod(sizeA(dimA))]; # Temp. 2D size for A
## Prepare for B (See comments for A.
## FIXME: Note that in principle, prod (sizeB (dimB)) should always be equal
## to prod (sizeA (dimA)). May be able to optimize further here.
remainDimB = [1:ndimsB];
remainDimB(dimB) = []; # Dimensions of B to keep
newDimOrderB = [remainDimB, dimB];
newSizeB = [prod(sizeB(remainDimB)), prod(sizeB(dimB))];
## Do reshaping into 2D array
newA = reshape (permute (A, newDimOrderA), newSizeA);
newB = reshape (permute (B, newDimOrderB), newSizeB);
## Compute
C = newA * newB.';
## If not an inner product, reshape back to tensor
if (! isscalar (C))
## Contribution to size of C from remaining A dims
remainSizeA = sizeA(remainDimA);
remainSizeB = sizeB(remainDimB);
C = reshape (C, [remainSizeA, remainSizeB]);
endif
endfunction
%!assert (tensorprod (2, 3), 6)
%!assert (tensorprod (2, 3, 1), 6)
%!assert (tensorprod (2, 3, 2), 6)
%!assert (tensorprod (2, 3, 10), 6)
%!assert (tensorprod (2, 3, [1 2]), 6)
%!assert (tensorprod (2, 3, [1 10]), 6)
%!assert (tensorprod (2, 3, []), 6)
%!assert (tensorprod (2, 3, 2, 1), 6)
%!assert (tensorprod (2, 3, [], []), 6)
%!shared v1, v2, M1, M2, T
%! v1 = [1, 2];
%! M1 = [1, 2; 3, 4];
%! M2 = [1, 2; 3, 4; 5, 6];
%! T = cat (3, M2, M2);
%!assert (tensorprod (3, v1), reshape ([3, 6], [1, 1, 1, 2]))
%!assert (tensorprod (v1, 3), [3, 6])
%!assert (tensorprod (v1, v1, "all"), 5)
%!assert (tensorprod (v1, v1), reshape ([1, 2, 2, 4], [1, 2, 1, 2]))
%!assert (tensorprod (v1, v1, 1), [1, 2; 2, 4])
%!assert (tensorprod (v1, v1, 2), 5)
%!assert (tensorprod (v1, v1, 3), reshape ([1, 2, 2, 4], [1, 2, 1, 2]))
%!assert (tensorprod (v1, v1, 5), reshape ([1, 2, 2, 4], [1, 2, 1, 1, 1, 2]))
%!assert (tensorprod (M1, v1), cat (4, [1,2;3,4], [2,4;6,8]))
%!assert (tensorprod (M1, v1'), cat (3, [1,2;3,4], [2,4;6,8]))
%!assert (tensorprod (v1, M1), reshape ([1 2 3 6 2 4 4 8], [1,2,2,2]))
%!assert (tensorprod (v1', M1), reshape ([1 2 3 6 2 4 4 8], [2,1,2,2]))
%!assert (tensorprod (M1, v1', 2, 1), [5; 11])
%!assert (tensorprod (M1, v1', 4, 4), cat(4, M1, 2*M1))
%!assert (tensorprod (M1, v1', [1, 3]), [7; 10])
%!assert (tensorprod (M1, v1', [1, 3], [1, 3]), [7; 10])
%!assert (tensorprod (M1, v1', [2, 3], [1, 3]), [5; 11])
%!assert (tensorprod (M1, v1', [2; 3], [1; 3]), [5; 11])
%!assert (tensorprod (M1, v1', [2; 3], [1, 3]), [5; 11])
%!assert (tensorprod (M1, v1', [2, 3], [1; 3]), [5; 11])
%!assert (tensorprod (M1, v1', [], []), cat (3, M1, 2*M1))
%!assert (tensorprod (M1, M1, "all"), 30)
%!assert (tensorprod (M1, M1, 1), [10, 14; 14, 20])
%!assert (tensorprod (M1, M1, 2), [5, 11; 11, 25])
%!assert (tensorprod (M1, M2, 2), [5, 11, 17; 11, 25, 39])
%!assert (tensorprod (M1, M2, 1, 2), [7, 15, 23; 10, 22, 34])
%!assert (tensorprod (M1, M2), reshape ([1,3,2,4,3,9,6,12,5,15,10,20,2,6,4, ...
%! 8,4,12,8,16,6,18,12,24], [2,2,3,2]))
%!assert (tensorprod (T, M1),
%! reshape([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18,2, ...
%! 6,10,4,8,12,2,6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24],
%! [3,2,2,2,2]))
%!assert (tensorprod (T, M1, 2),
%! cat (3, [5, 5; 11 11; 17, 17], [11, 11; 25, 25; 39, 39]))
%!assert (tensorprod (T, M2, 1), cat (3, [35, 35; 44, 44], [44, 44; 56, 56]))
%!assert (tensorprod (T, M2, 2), cat (3, [5, 5; 11, 11; 17, 17],
%! [11,11;25,25;39,39], [17, 17; 39, 39; 61, 61]))
%!assert (tensorprod (T, T, "all"), 182)
%!assert (tensorprod (T, T, 1),
%! reshape ([35,44,35,44,44,56,44,56,35,44,35,44,44,56,44,56],
%! [2,2,2,2]))
%!assert (tensorprod (T, T, 2),
%! reshape ([5,11,17,5,11,17,11,25,39,11,25,39,17,39,61,17,39,61,5, ...
%! 11,17,5,11,17,11,25,39,11,25,39,17,39,61,17,39,61],
%! [3,2,3,2]))
%!assert (tensorprod (T, T, 3),
%! reshape ([2,6,10,4,8,12,6,18,30,12,24,36,10,30,50,20,40,60,4,12, ...
%! 20,8,16,24,8,24,40,16,32,48,12,36,60,24,48,72], [3,2,3,2]));
%!assert (tensorprod (T, T, 10),
%! reshape ([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18, ...
%! 5,15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2,6,10, ...
%! 4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24,36, ...
%! 6,18,30,12,24,36,1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18, ...
%! 3,9,15,6,12,18,5,15,25,10,20,30,5,15,25,10,20,30,2,6,10, ...
%! 4,8,12,2,6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6, ...
%! 18,30,12,24,36,6,18,30,12,24,36],
%! [3,2,2,1,1,1,1,1,1,3,2,2]))
%!assert (tensorprod (T, T, []),
%! reshape ([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18, ...
%! 5,15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2,6,10, ...
%! 4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24,36, ...
%! 6,18,30,12,24,36,1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18, ...
%! 3,9,15,6,12,18,5,15,25,10,20,30,5,15,25,10,20,30,2,6,10, ...
%! 4,8,12,2,6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6, ...
%! 18,30,12,24,36,6,18,30,12,24,36],
%! [3,2,2,3,2,2]))
%!assert (tensorprod (T, T, 2, 3),
%! reshape ([3,7,11,3,7,11,9,21,33,9,21,33,15,35,55,15,35,55,6,14, ...
%! 22,6,14,22,12,28,44,12,28,44,18,42,66,18,42,66],
%! [3,2,3,2]))
%!assert (tensorprod (T, T(1:2, 1:2, :), [2, 3],[1, 3]),
%! [14, 20; 30, 44; 46, 68])
%!assert (tensorprod (T, T(1:2, 1:2, :), [3, 2],[1, 3]),
%! [12, 18; 28, 42; 44, 66])
%!assert (tensorprod (T, reshape (T, [2, 2, 3]), 2, 1),
%! reshape ([7,15,23,7,15,23,9,23,37,9,23,37,16,36,56,16,36,56,7,15, ...
%! 23,7,15,23,9,23,37,9,23,37,16,36,56,16,36,56],
%! [3,2,2,3]))
%!assert (tensorprod (T, T, [1, 3]), [70, 88; 88, 112])
%!assert (tensorprod (T, T, [1, 3]), tensorprod (T, T, [3, 1]))
%!assert (tensorprod (T, reshape (T, [2, 2, 3]), [2, 3], [1, 2]),
%! [16, 23, 25; 38, 51, 59; 60, 79, 93])
## NumDimensionsA tests
%!assert (tensorprod (v1, v1, "NumDimensionsA", 2),
%! reshape ([1, 2, 2, 4], [1, 2, 1, 2]));
%!assert (tensorprod (v1, v1, "numdimensionsa", 2),
%! tensorprod (v1, v1, "NumDimensionsA", 2));
%!assert (tensorprod (v1, v1, "NumDimensionsA", 3),
%! reshape ([1, 2, 2, 4], [1, 2, 1, 1, 2]));
%!assert (tensorprod (v1, v1, [], "NumDimensionsA", 3),
%! reshape ([1, 2, 2, 4], [1, 2, 1, 1, 2]));
%!assert (tensorprod (v1, v1, [], [], "NumDimensionsA", 3),
%! reshape ([1, 2, 2, 4], [1, 2, 1, 1, 2]));
%!assert (tensorprod (v1, v1, "all", "NumDimensionsA", 3), 5);
%!assert (tensorprod (M1, v1, 2, "NumDimensionsA", 2), [5; 11]);
%!assert (tensorprod (M1, v1, 2, "NumDimensionsA", 5), [5; 11]);
%!assert (tensorprod (M1, v1, [2, 3], "NumDimensionsA", 5), [5; 11]);
%!assert (tensorprod (M1, M2, "NumDimensionsA", 2), reshape ([1,3,2,4,3,9,6, ...
%! 12,5,15,10,20,2,6,4,8,4,12,8,16,6,18,12,24], [2,2,3,2]))
%!assert (tensorprod (M1, M2, "NumDimensionsA", 3), reshape ([1,3,2,4,3,9,6, ...
%! 12,5,15,10,20,2,6,4,8,4,12,8,16,6,18,12,24], [2,2,1,3,2]))
%!assert (tensorprod (T, T, 1, "NumDimensionsA", 3),
%! reshape ([35,44,35,44,44,56,44,56,35,44,35,44,44,56,44,56],
%! [2,2,2,2]))
%!assert (tensorprod (T, T, 3, "NumDimensionsA", 3),
%! reshape ([2,6,10,4,8,12,6,18,30,12,24,36,10,30,50,20,40,60,4,12, ...
%! 20,8,16,24, 8,24,40,16,32,48,12,36,60,24,48,72],
%! [3,2,3,2]))
%!assert (tensorprod (T, T, 1, "NumDimensionsA", 4),
%! reshape ([35,44,35,44,44,56,44,56,35,44,35,44,44,56,44,56],
%! [2,2,1,2,2]))
%!assert (tensorprod (T, T, 4, "NumDimensionsA", 4),
%! reshape ([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18,5, ...
%! 15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2,6,10,4,8, ...
%! 12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24,36,6,18, ...
%! 30,12,24,36,1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15, ...
%! 6,12,18,5,15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2, ...
%! 6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24, ...
%! 36,6,18,30,12,24,36],
%! [3,2,2,3,2,2]))
## Test empty inputs
%!assert (tensorprod ([], []), zeros (0, 0, 0, 0))
%!assert (tensorprod ([], 1), [])
%!assert (tensorprod (1, []), zeros (1, 1, 0, 0))
%!assert (tensorprod (zeros (0, 0, 0), zeros (0, 0, 0)), zeros (0, 0, 0, 0, 0, 0))
%!assert (tensorprod ([], [], []), zeros (0, 0, 0, 0))
%!assert (tensorprod ([], [], 1), [])
%!assert (tensorprod ([], [], 2), [])
%!assert (tensorprod ([], [], 3), zeros (0, 0, 0, 0))
%!assert (tensorprod ([], [], 4), zeros (0, 0, 1, 0, 0))
%!assert (tensorprod ([], [], 5), zeros (0, 0, 1, 1, 0, 0))
%!assert (tensorprod ([], [], 3, "NumDimensionsA", 4), zeros (0, 0, 1, 0, 0))
%!assert (tensorprod ([], [], 3, 4, "NumDimensionsA", 5), zeros (0, 0, 1, 1, 0, 0))
## Test input validation
%!error <Invalid call> tensorprod ()
%!error <Invalid call> tensorprod (1)
%!error <Invalid call> tensorprod (1,2,3,4,5,6,7)
%!error <A must be a single or double precision array> tensorprod ("foo", 1)
%!error <B must be a single or double precision array> tensorprod (1, "bar")
%!error <A must be a single or double precision array> tensorprod (int32(1), 1)
%!error <B must be a single or double precision array> tensorprod (1, int32(1))
%!error <value for the NumDimensionsA property must be provided> tensorprod (1, 1, "NumDimensionsA")
%!error <NumDimensionsA=VALUE syntax is unsupported> tensorprod (1, 1, NumDimensionsA=1)
%!error <value for NumDimensionsA must be a numeric scalar> tensorprod (1, 1, 2, 1, "NumDimensionsA", "foo")
%!error <value for NumDimensionsA must be a numeric scalar> tensorprod (1, 1, 2, 1, "NumDimensionsA", [1 2])
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", -1)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", 0)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", 1.5)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", NaN)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", Inf)
%!error <DIM must be a numeric vector of integers or \[\]> tensorprod (1, 1, ones (2,2))
%!error <DIM must be a numeric vector of integers or \[\]> tensorprod (1, 1, zeros (0,0,0))
%!error <size of A and B must be identical when using the 'all' option> tensorprod (ones (3, 4), ones (4, 3), "all")
%!error <unknown option 'foo'> tensorprod (1, 1, "foo")
%!error <third argument must be a numeric vector of integers, \[\], or 'all'> tensorprod (1, 1, {})
%!error <DIMA must be a numeric vector of integers or \[\]> tensorprod (1, 1, "foo", 1)
%!error <DIMA must be a numeric vector of integers or \[\]> tensorprod (1, 1, ones (2,2), 1)
%!error <DIMA must be a numeric vector of integers or \[\]> tensorprod (1, 1, zeros (0,0,0), 1)
%!error <DIMB must be a numeric vector of integers or \[\]> tensorprod (1, 1, 1, "bar")
%!error <DIMB must be a numeric vector of integers or \[\]> tensorprod (1, 1, 1, ones (2,2))
%!error <DIMB must be a numeric vector of integers or \[\]> tensorprod (1, 1, 1, zeros (0,0,0))
%!error <an equal number of dimensions must be matched for A and B> tensorprod (ones (3, 4), ones (4, 3), 1, [1, 2])
%!error <an equal number of dimensions must be matched for A and B> tensorprod (ones (3, 4), ones (4, 3), 1, [])
%!error <an equal number of dimensions must be matched for A and B> tensorprod (ones (3, 4), ones (4, 3), [], [1, 2])
%!error <misplaced 'NumDimensionsA' option> tensorprod (1, 1, "NumDimensionsA", 1, 1)
%!error <misplaced 'all' option> tensorprod (1, 1, 1, "all", 1)
%!error <unknown option 'foo'> tensorprod (1, 1, 1, "foo", 1)
%!error <optional arguments must be numeric vectors of integers, \[\], 'all', or 'NumDimensionsA'> tensorprod (1, 1, 1, {}, 1)
%!error <too many dimension inputs given> tensorprod (1, 1, 2, 1, 1)
%!error <too many dimension inputs given> tensorprod (1, 1, 2, 1, 1, 1)
%!error <dimensions must be positive integers> tensorprod (1, 1, 0)
%!error <dimensions must be positive integers> tensorprod (1, 1, -1)
%!error <dimensions must be positive integers> tensorprod (1, 1, 1.5)
%!error <dimensions must be positive integers> tensorprod (1, 1, NaN)
%!error <dimensions must be positive integers> tensorprod (1, 1, Inf)
%!error <matched dimensions of A and B must have the same lengths> tensorprod (ones (3, 4), ones (4, 3), 1)
%!error <matched dimensions of A and B must have the same lengths> tensorprod (ones (3, 4), ones (4, 3), 1, 1)
%!error <highest dimension of dim must be less than or equal to NumDimensionsA> tensorprod (1, 1, 5, "NumDimensionsA", 4)
%!error <highest dimension of dimA must be less than or equal to NumDimensionsA> tensorprod (1, 1, 5, 2, "NumDimensionsA", 4)
%!error <NumDimensionsA cannot be smaller than the number of dimensions of A> tensorprod (ones (2, 2, 2), 1, "NumDimensionsA", 2)
|