File: tensorprod.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (429 lines) | stat: -rw-r--r-- 21,213 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
########################################################################
##
## Copyright (C) 2022-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{C} =} tensorprod (@var{A}, @var{B}, @var{dimA}, @var{dimB})
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B}, @var{dim})
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B})
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B}, "all")
## @deftypefnx {} {@var{C} =} tensorprod (@var{A}, @var{B}, @dots{}, "NumDimensionsA", @var{value})
## Compute the tensor product between numeric tensors @var{A} and @var{B}.
##
## The dimensions of @var{A} and @var{B} that are contracted are defined by
## @var{dimA} and @var{dimB}, respectively.  @var{dimA} and @var{dimB} are
## scalars or equal length vectors that define the dimensions to match up.
## The matched dimensions of @var{A} and @var{B} must have the same number of
## elements.
##
## When only @var{dim} is used, it is equivalent to
## @code{@var{dimA} = @var{dimB} = @var{dim}}.
##
## When no dimensions are specified, @code{@var{dimA} = @var{dimB} = []}.  This
## computes the outer product between @var{A} and @var{B}.
##
## Using the @qcode{"all"} option results in the inner product between @var{A}
## and @var{B}.  This requires @code{size (@var{A}) == size (@var{B})}.
##
## Use the property-value pair with the property name
## @nospell{@qcode{"NumDimensionsA"}} when @var{A} has trailing singleton
## dimensions that should be transferred to @var{C}.  The specified @var{value}
## should be the total number of dimensions of @var{A}.
##
## @sc{matlab} Compatibility: Octave does not currently support the
## @qcode{"@var{property_name}=@var{value}"} syntax for the
## @nospell{@qcode{"NumDimensionsA"}} parameter.
##
## @seealso{kron, dot, mtimes}
## @end deftypefn

function C = tensorprod (A, B, varargin)

  ## FIXME: shortcut code paths could be added for trivial cases, such as if
  ##        either A or B are a scalars, null, identity tensors, etc.

  if (nargin < 2 || nargin > 6)
    print_usage ();
  endif

  ## Check that A and B are single or double
  if (! isfloat (A))
    error ("tensorprod: A must be a single or double precision array");
  endif
  if (! isfloat (B))
    error ("tensorprod: B must be a single or double precision array");
  endif

  ## Check for misplaced NumDimensionsA property
  NumDimensionsA = 0;
  if (nargin > 2)
    if (strcmpi (varargin{end}, "NumDimensionsA"))
      error ("tensorprod: a value for the NumDimensionsA property must be provided");
    elseif (strncmpi (arg = inputname (nargin, false), "NumDimensionsA", 13))
      error ("tensorprod: NumDimensionsA=VALUE syntax is unsupported.  Use syntax 'NumDimensionsA', VALUE");
    endif
  endif
  ## Check for NumDimensionsA property
  if (nargin > 3)
    if (strcmpi (varargin{end-1}, "NumDimensionsA"))
      NumDimensionsA = varargin{end};
      if (! (isnumeric (NumDimensionsA) && isscalar (NumDimensionsA)))
        error ("tensorprod: value for NumDimensionsA must be a numeric scalar");
      elseif (! isindex (NumDimensionsA))
        error ("tensorprod: value for NumDimensionsA must be a positive integer");
      endif
      nargin = nargin - 2;
    endif
  endif

  ndimargs = nargin - 2;

  ## Set dimA and dimB
  if (ndimargs == 0)
    ## Calling without dimension arguments
    dimA = [];
    dimB = [];
  elseif (ndimargs == 1)
    ## Calling with dim or "all" option
    if (isnumeric (varargin{1}))
      if (! (isvector (varargin{1}) || isnull (varargin{1})))
        error ("tensorprod: DIM must be a numeric vector of integers or []");
      endif
      ## Calling with dim
      dimA = varargin{1}(:).';  # Reshape to row vector
    elseif (ischar (varargin{1}))
      if (strcmpi (varargin{1}, "all"))
        if (! size_equal (A, B))
          error ("tensorprod: size of A and B must be identical when using the 'all' option");
        endif
      else
        error ("tensorprod: unknown option '%s'", varargin{1});
      endif
      ## Calling with "all" option
      dimA = 1:ndims(A);
    else
      error ("tensorprod: third argument must be a numeric vector of integers, [], or 'all'");
    endif
    dimB = dimA;
  elseif (ndimargs == 2)
    ## Calling with dimA and dimB
    if (! (isnumeric (varargin{1})
           && (isvector (varargin{1}) || isnull (varargin{1}))))
      error("tensorprod: DIMA must be a numeric vector of integers or []");
    endif

    if (! (isnumeric (varargin{2})
           && (isvector (varargin{2}) || isnull (varargin{2}))))
      error ("tensorprod: DIMB must be a numeric vector of integers or []");
    endif

    if (numel (varargin{1}) != numel (varargin{2}))
      error ("tensorprod: an equal number of dimensions must be matched for A and B");
    endif
    dimA = varargin{1}(:).';  # Reshape to row vector
    dimB = varargin{2}(:).';
  else
    ## Something is wrong - try to find the error
    for i = 1:ndimargs
      if (ischar (varargin{i}))
        if (strcmpi (varargin{i}, "NumDimensionsA"))
          error ("tensorprod: misplaced 'NumDimensionsA' option");
        elseif (strcmpi (varargin{i}, "all"))
          error ("tensorprod: misplaced 'all' option");
        else
          error ("tensorprod: unknown option '%s'", varargin{i});
        endif
      elseif (! isnumeric (varargin{i}))
        error ("tensorprod: optional arguments must be numeric vectors of integers, [], 'all', or 'NumDimensionsA'");
      endif
    endfor
    error ("tensorprod: too many dimension inputs given");
  endif

  ## Check that dimensions are positive integers ([] will also pass)
  if (! isindex (dimA) || ! isindex (dimB))
    error ("tensorprod: dimensions must be positive integers");
  endif

  ## Check that the length of matched dimensions are equal
  if (any (size (A, dimA) != size (B, dimB)))
    error ("tensorprod: matched dimensions of A and B must have the same lengths");
  endif

  ## Find size and ndims of A and B
  ndimsA = max ([ndims(A), max(dimA)]);
  sizeA = size (A, 1:ndimsA);
  ndimsB = max ([ndims(B), max(dimB)]);
  sizeB = size (B, 1:ndimsB);

  ## Take NumDimensionsA property into account
  if (NumDimensionsA)
    if (NumDimensionsA < ndimsA)
      if (ndimargs == 1)
        error ("tensorprod: highest dimension of dim must be less than or equal to NumDimensionsA");
      elseif (ndimargs == 2)
        error ("tensorprod: highest dimension of dimA must be less than or equal to NumDimensionsA");
      else
        error ("tensorprod: NumDimensionsA cannot be smaller than the number of dimensions of A");
      endif
    elseif (NumDimensionsA > ndimsA)
      sizeA = [sizeA, ones(1, NumDimensionsA - ndimsA)];
      ndimsA = NumDimensionsA;
    endif
  endif

  ## Interchange the dimension to sum over the end of A and the front of B
  ## Prepare for A
  remainDimA = [1:ndimsA];
  remainDimA(dimA) = [];   # Dimensions of A to keep
  newDimOrderA = [remainDimA, dimA];  # New dim order [to_keep, to_contract]
  newSizeA = [prod(sizeA(remainDimA)), prod(sizeA(dimA))]; # Temp. 2D size for A

  ## Prepare for B (See comments for A.
  ## FIXME: Note that in principle, prod (sizeB (dimB)) should always be equal
  ## to prod (sizeA (dimA)).  May be able to optimize further here.
  remainDimB = [1:ndimsB];
  remainDimB(dimB) = [];   # Dimensions of B to keep
  newDimOrderB = [remainDimB, dimB];
  newSizeB = [prod(sizeB(remainDimB)), prod(sizeB(dimB))];

  ## Do reshaping into 2D array
  newA = reshape (permute (A, newDimOrderA), newSizeA);
  newB = reshape (permute (B, newDimOrderB), newSizeB);

  ## Compute
  C = newA * newB.';

  ## If not an inner product, reshape back to tensor
  if (! isscalar (C))
    ## Contribution to size of C from remaining A dims
    remainSizeA = sizeA(remainDimA);
    remainSizeB = sizeB(remainDimB);
    C = reshape (C, [remainSizeA, remainSizeB]);
  endif

endfunction


%!assert (tensorprod (2, 3), 6)
%!assert (tensorprod (2, 3, 1), 6)
%!assert (tensorprod (2, 3, 2), 6)
%!assert (tensorprod (2, 3, 10), 6)
%!assert (tensorprod (2, 3, [1 2]), 6)
%!assert (tensorprod (2, 3, [1 10]), 6)
%!assert (tensorprod (2, 3, []), 6)
%!assert (tensorprod (2, 3, 2, 1), 6)
%!assert (tensorprod (2, 3, [], []), 6)

%!shared v1, v2, M1, M2, T
%! v1 = [1, 2];
%! M1 = [1, 2; 3, 4];
%! M2 = [1, 2; 3, 4; 5, 6];
%! T = cat (3, M2, M2);

%!assert (tensorprod (3, v1), reshape ([3, 6], [1, 1, 1, 2]))
%!assert (tensorprod (v1, 3), [3, 6])
%!assert (tensorprod (v1, v1, "all"), 5)
%!assert (tensorprod (v1, v1), reshape ([1, 2, 2, 4], [1, 2, 1, 2]))
%!assert (tensorprod (v1, v1, 1), [1, 2; 2, 4])
%!assert (tensorprod (v1, v1, 2), 5)
%!assert (tensorprod (v1, v1, 3), reshape ([1, 2, 2, 4], [1, 2, 1, 2]))
%!assert (tensorprod (v1, v1, 5), reshape ([1, 2, 2, 4], [1, 2, 1, 1, 1, 2]))

%!assert (tensorprod (M1, v1), cat (4, [1,2;3,4], [2,4;6,8]))
%!assert (tensorprod (M1, v1'), cat (3, [1,2;3,4], [2,4;6,8]))
%!assert (tensorprod (v1, M1), reshape ([1 2 3 6 2 4 4 8], [1,2,2,2]))
%!assert (tensorprod (v1', M1), reshape ([1 2 3 6 2 4 4 8], [2,1,2,2]))
%!assert (tensorprod (M1, v1', 2, 1), [5; 11])
%!assert (tensorprod (M1, v1', 4, 4), cat(4, M1, 2*M1))
%!assert (tensorprod (M1, v1', [1, 3]), [7; 10])
%!assert (tensorprod (M1, v1', [1, 3], [1, 3]), [7; 10])
%!assert (tensorprod (M1, v1', [2, 3], [1, 3]), [5; 11])
%!assert (tensorprod (M1, v1', [2; 3], [1; 3]), [5; 11])
%!assert (tensorprod (M1, v1', [2; 3], [1, 3]), [5; 11])
%!assert (tensorprod (M1, v1', [2, 3], [1; 3]), [5; 11])
%!assert (tensorprod (M1, v1', [], []), cat (3, M1, 2*M1))
%!assert (tensorprod (M1, M1, "all"), 30)
%!assert (tensorprod (M1, M1, 1), [10, 14; 14, 20])
%!assert (tensorprod (M1, M1, 2), [5, 11; 11, 25])
%!assert (tensorprod (M1, M2, 2), [5, 11, 17; 11, 25, 39])
%!assert (tensorprod (M1, M2, 1, 2), [7, 15, 23; 10, 22, 34])
%!assert (tensorprod (M1, M2), reshape ([1,3,2,4,3,9,6,12,5,15,10,20,2,6,4, ...
%!                                      8,4,12,8,16,6,18,12,24], [2,2,3,2]))

%!assert (tensorprod (T, M1),
%!        reshape([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18,2, ...
%!                6,10,4,8,12,2,6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24],
%!                [3,2,2,2,2]))
%!assert (tensorprod (T, M1, 2),
%!        cat (3, [5, 5; 11 11; 17, 17], [11, 11; 25, 25; 39, 39]))
%!assert (tensorprod (T, M2, 1), cat (3, [35, 35; 44, 44], [44, 44; 56, 56]))
%!assert (tensorprod (T, M2, 2), cat (3, [5, 5; 11, 11; 17, 17],
%!                     [11,11;25,25;39,39], [17, 17; 39, 39; 61, 61]))
%!assert (tensorprod (T, T, "all"), 182)
%!assert (tensorprod (T, T, 1),
%!        reshape ([35,44,35,44,44,56,44,56,35,44,35,44,44,56,44,56],
%!                 [2,2,2,2]))
%!assert (tensorprod (T, T, 2),
%!        reshape ([5,11,17,5,11,17,11,25,39,11,25,39,17,39,61,17,39,61,5, ...
%!                 11,17,5,11,17,11,25,39,11,25,39,17,39,61,17,39,61],
%!                 [3,2,3,2]))
%!assert (tensorprod (T, T, 3),
%!        reshape ([2,6,10,4,8,12,6,18,30,12,24,36,10,30,50,20,40,60,4,12, ...
%!                 20,8,16,24,8,24,40,16,32,48,12,36,60,24,48,72], [3,2,3,2]));
%!assert (tensorprod (T, T, 10),
%!        reshape ([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18, ...
%!                 5,15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2,6,10, ...
%!                 4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24,36, ...
%!                 6,18,30,12,24,36,1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18, ...
%!                 3,9,15,6,12,18,5,15,25,10,20,30,5,15,25,10,20,30,2,6,10, ...
%!                 4,8,12,2,6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6, ...
%!                 18,30,12,24,36,6,18,30,12,24,36],
%!                 [3,2,2,1,1,1,1,1,1,3,2,2]))
%!assert (tensorprod (T, T, []),
%!        reshape ([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18, ...
%!                 5,15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2,6,10, ...
%!                 4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24,36, ...
%!                 6,18,30,12,24,36,1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18, ...
%!                 3,9,15,6,12,18,5,15,25,10,20,30,5,15,25,10,20,30,2,6,10, ...
%!                 4,8,12,2,6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6, ...
%!                 18,30,12,24,36,6,18,30,12,24,36],
%!                 [3,2,2,3,2,2]))
%!assert (tensorprod (T, T, 2, 3),
%!        reshape ([3,7,11,3,7,11,9,21,33,9,21,33,15,35,55,15,35,55,6,14, ...
%!                 22,6,14,22,12,28,44,12,28,44,18,42,66,18,42,66],
%!                 [3,2,3,2]))
%!assert (tensorprod (T, T(1:2, 1:2, :), [2, 3],[1, 3]),
%!        [14, 20; 30, 44; 46, 68])
%!assert (tensorprod (T, T(1:2, 1:2, :), [3, 2],[1, 3]),
%!        [12, 18; 28, 42; 44, 66])
%!assert (tensorprod (T, reshape (T, [2, 2, 3]), 2, 1),
%!        reshape ([7,15,23,7,15,23,9,23,37,9,23,37,16,36,56,16,36,56,7,15, ...
%!                 23,7,15,23,9,23,37,9,23,37,16,36,56,16,36,56],
%!                 [3,2,2,3]))
%!assert (tensorprod (T, T, [1, 3]), [70, 88; 88, 112])
%!assert (tensorprod (T, T, [1, 3]), tensorprod (T, T, [3, 1]))
%!assert (tensorprod (T, reshape (T, [2, 2, 3]), [2, 3], [1, 2]),
%!        [16, 23, 25; 38, 51, 59; 60, 79, 93])

## NumDimensionsA tests
%!assert (tensorprod (v1, v1, "NumDimensionsA", 2),
%!        reshape ([1, 2, 2, 4], [1, 2, 1, 2]));
%!assert (tensorprod (v1, v1, "numdimensionsa", 2),
%!        tensorprod (v1, v1, "NumDimensionsA", 2));
%!assert (tensorprod (v1, v1, "NumDimensionsA", 3),
%!        reshape ([1, 2, 2, 4], [1, 2, 1, 1, 2]));
%!assert (tensorprod (v1, v1, [], "NumDimensionsA", 3),
%!        reshape ([1, 2, 2, 4], [1, 2, 1, 1, 2]));
%!assert (tensorprod (v1, v1, [], [], "NumDimensionsA", 3),
%!        reshape ([1, 2, 2, 4], [1, 2, 1, 1, 2]));
%!assert (tensorprod (v1, v1, "all", "NumDimensionsA", 3), 5);
%!assert (tensorprod (M1, v1, 2, "NumDimensionsA", 2), [5; 11]);
%!assert (tensorprod (M1, v1, 2, "NumDimensionsA", 5), [5; 11]);
%!assert (tensorprod (M1, v1, [2, 3], "NumDimensionsA", 5), [5; 11]);
%!assert (tensorprod (M1, M2, "NumDimensionsA", 2), reshape ([1,3,2,4,3,9,6, ...
%!        12,5,15,10,20,2,6,4,8,4,12,8,16,6,18,12,24], [2,2,3,2]))
%!assert (tensorprod (M1, M2, "NumDimensionsA", 3), reshape ([1,3,2,4,3,9,6, ...
%!        12,5,15,10,20,2,6,4,8,4,12,8,16,6,18,12,24], [2,2,1,3,2]))
%!assert (tensorprod (T, T, 1, "NumDimensionsA", 3),
%!        reshape ([35,44,35,44,44,56,44,56,35,44,35,44,44,56,44,56],
%!                 [2,2,2,2]))
%!assert (tensorprod (T, T, 3, "NumDimensionsA", 3),
%!        reshape ([2,6,10,4,8,12,6,18,30,12,24,36,10,30,50,20,40,60,4,12, ...
%!                20,8,16,24, 8,24,40,16,32,48,12,36,60,24,48,72],
%!                [3,2,3,2]))
%!assert (tensorprod (T, T, 1, "NumDimensionsA", 4),
%!        reshape ([35,44,35,44,44,56,44,56,35,44,35,44,44,56,44,56],
%!                [2,2,1,2,2]))
%!assert (tensorprod (T, T, 4, "NumDimensionsA", 4),
%!        reshape ([1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15,6,12,18,5, ...
%!                15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2,6,10,4,8, ...
%!                12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24,36,6,18, ...
%!                30,12,24,36,1,3,5,2,4,6,1,3,5,2,4,6,3,9,15,6,12,18,3,9,15, ...
%!                6,12,18,5,15,25,10,20,30,5,15,25,10,20,30,2,6,10,4,8,12,2, ...
%!                6,10,4,8,12,4,12,20,8,16,24,4,12,20,8,16,24,6,18,30,12,24, ...
%!                36,6,18,30,12,24,36],
%!                [3,2,2,3,2,2]))

## Test empty inputs
%!assert (tensorprod ([], []), zeros (0, 0, 0, 0))
%!assert (tensorprod ([], 1), [])
%!assert (tensorprod (1, []), zeros (1, 1, 0, 0))
%!assert (tensorprod (zeros (0, 0, 0), zeros (0, 0, 0)), zeros (0, 0, 0, 0, 0, 0))
%!assert (tensorprod ([], [], []), zeros (0, 0, 0, 0))
%!assert (tensorprod ([], [], 1), [])
%!assert (tensorprod ([], [], 2), [])
%!assert (tensorprod ([], [], 3), zeros (0, 0, 0, 0))
%!assert (tensorprod ([], [], 4), zeros (0, 0, 1, 0, 0))
%!assert (tensorprod ([], [], 5), zeros (0, 0, 1, 1, 0, 0))
%!assert (tensorprod ([], [], 3, "NumDimensionsA", 4), zeros (0, 0, 1, 0, 0))
%!assert (tensorprod ([], [], 3, 4, "NumDimensionsA", 5), zeros (0, 0, 1, 1, 0, 0))

## Test input validation
%!error <Invalid call> tensorprod ()
%!error <Invalid call> tensorprod (1)
%!error <Invalid call> tensorprod (1,2,3,4,5,6,7)
%!error <A must be a single or double precision array> tensorprod ("foo", 1)
%!error <B must be a single or double precision array> tensorprod (1, "bar")
%!error <A must be a single or double precision array> tensorprod (int32(1), 1)
%!error <B must be a single or double precision array> tensorprod (1, int32(1))
%!error <value for the NumDimensionsA property must be provided> tensorprod (1, 1, "NumDimensionsA")
%!error <NumDimensionsA=VALUE syntax is unsupported> tensorprod (1, 1, NumDimensionsA=1)
%!error <value for NumDimensionsA must be a numeric scalar> tensorprod (1, 1, 2, 1, "NumDimensionsA", "foo")
%!error <value for NumDimensionsA must be a numeric scalar> tensorprod (1, 1, 2, 1, "NumDimensionsA", [1 2])
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", -1)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", 0)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", 1.5)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", NaN)
%!error <value for NumDimensionsA must be a positive integer> tensorprod (1, 1, 2, 1, "NumDimensionsA", Inf)
%!error <DIM must be a numeric vector of integers or \[\]> tensorprod (1, 1, ones (2,2))
%!error <DIM must be a numeric vector of integers or \[\]> tensorprod (1, 1, zeros (0,0,0))
%!error <size of A and B must be identical when using the 'all' option> tensorprod (ones (3, 4), ones (4, 3), "all")
%!error <unknown option 'foo'> tensorprod (1, 1, "foo")
%!error <third argument must be a numeric vector of integers, \[\], or 'all'> tensorprod (1, 1, {})
%!error <DIMA must be a numeric vector of integers or \[\]> tensorprod (1, 1, "foo", 1)
%!error <DIMA must be a numeric vector of integers or \[\]> tensorprod (1, 1, ones (2,2), 1)
%!error <DIMA must be a numeric vector of integers or \[\]> tensorprod (1, 1, zeros (0,0,0), 1)
%!error <DIMB must be a numeric vector of integers or \[\]> tensorprod (1, 1, 1, "bar")
%!error <DIMB must be a numeric vector of integers or \[\]> tensorprod (1, 1, 1, ones (2,2))
%!error <DIMB must be a numeric vector of integers or \[\]> tensorprod (1, 1, 1, zeros (0,0,0))
%!error <an equal number of dimensions must be matched for A and B> tensorprod (ones (3, 4), ones (4, 3), 1, [1, 2])
%!error <an equal number of dimensions must be matched for A and B> tensorprod (ones (3, 4), ones (4, 3), 1, [])
%!error <an equal number of dimensions must be matched for A and B> tensorprod (ones (3, 4), ones (4, 3), [], [1, 2])
%!error <misplaced 'NumDimensionsA' option> tensorprod (1, 1, "NumDimensionsA", 1, 1)
%!error <misplaced 'all' option> tensorprod (1, 1, 1, "all", 1)
%!error <unknown option 'foo'> tensorprod (1, 1, 1, "foo", 1)
%!error <optional arguments must be numeric vectors of integers, \[\], 'all', or 'NumDimensionsA'> tensorprod (1, 1, 1, {}, 1)
%!error <too many dimension inputs given> tensorprod (1, 1, 2, 1, 1)
%!error <too many dimension inputs given> tensorprod (1, 1, 2, 1, 1, 1)
%!error <dimensions must be positive integers> tensorprod (1, 1, 0)
%!error <dimensions must be positive integers> tensorprod (1, 1, -1)
%!error <dimensions must be positive integers> tensorprod (1, 1, 1.5)
%!error <dimensions must be positive integers> tensorprod (1, 1, NaN)
%!error <dimensions must be positive integers> tensorprod (1, 1, Inf)
%!error <matched dimensions of A and B must have the same lengths> tensorprod (ones (3, 4), ones (4, 3), 1)
%!error <matched dimensions of A and B must have the same lengths> tensorprod (ones (3, 4), ones (4, 3), 1, 1)
%!error <highest dimension of dim must be less than or equal to NumDimensionsA> tensorprod (1, 1, 5, "NumDimensionsA", 4)
%!error <highest dimension of dimA must be less than or equal to NumDimensionsA> tensorprod (1, 1, 5, 2, "NumDimensionsA", 4)
%!error <NumDimensionsA cannot be smaller than the number of dimensions of A> tensorprod (ones (2, 2, 2), 1, "NumDimensionsA", 2)