File: vecnorm.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (137 lines) | stat: -rw-r--r-- 4,302 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{n} =} vecnorm (@var{A})
## @deftypefnx {} {@var{n} =} vecnorm (@var{A}, @var{p})
## @deftypefnx {} {@var{n} =} vecnorm (@var{A}, @var{p}, @var{dim})
## Return the vector p-norm of the elements of array @var{A} along dimension
## @var{dim}.
##
## The p-norm of a vector is defined as
##
## @tex
## $$ {\Vert A \Vert}_p  = \left[ \sum_{i=1}^N {| A_i |}^p \right] ^ {1/p} $$
## @end tex
## @ifnottex
##
## @example
## @var{p-norm} (@var{A}, @var{p}) = (sum (abs (@var{A}) .^ @var{p})) ^ (1/@var{p})
## @end example
##
## @end ifnottex
## The input @var{p} must be a positive scalar.  If omitted it defaults to 2
## (Euclidean norm or distance).  Other special values of @var{p} are 1
## (Manhattan norm, sum of absolute values) and @code{Inf} (absolute value of
## largest element).
##
## The input @var{dim} specifies the dimension of the array on which the
## function operates and must be a positive integer.  If omitted the first
## non-singleton dimension is used.
##
## @seealso{norm}
## @end deftypefn

function n = vecnorm (A, p = 2, dim)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isnumeric (A))
    error ("vecnorm: A must be numeric");
  endif

  if (! (isscalar (p) && isreal (p) && p > 0))
    error ("vecnorm: P must be positive real scalar or Inf");
  endif

  if (nargin < 3)
    ## Find the first non-singleton dimension.
    (dim = find (size (A) > 1, 1)) || (dim = 1);
  elseif (! (isscalar (dim) && isindex (dim)))
    error ("vecnorm: DIM must be a positive integer");
  endif

  ## Calculate norm using the value of p to accelerate special cases
  switch (p)
    case {1}
      n = sum (abs (A), dim);

    case {2}
      n = sqrt (sumsq (A, dim));

    case {Inf}
      n = max (abs (A), [], dim);

    otherwise
      if (rem (p,2) == 0)
        ## Even index such as 2,4,6 are specifically accelerated in math
        ## libraries.  Beyond 6, it doesn't matter which method is used.
        if (iscomplex (A))
          n = (sum ((real (A).^2 + imag (A).^2) .^ (p/2), dim)) .^ (1 / p);
        else
          n = (sum (A.^2 .^ (p/2), dim)) .^ (1 / p);
        endif
      else
        n = (sum (abs (A) .^ p, dim)) .^ (1 / p);
      endif

  endswitch

endfunction


%!test
%! A = [0 1 2; 3 4 5];
%! c = vecnorm (A);
%! r = vecnorm (A, 2, 2);
%! i = vecnorm (A, Inf);
%! assert (c, [3.0000, 4.1231, 5.3852], 1e-4);
%! assert (r, [2.2361; 7.0711], 1e-4);
%! assert (i, [3, 4, 5]);
%!test
%! A = [1, 2];
%! assert (vecnorm (A), 2.2361, 1e-4);
%!test
%! A(:, :, 1) = [1, 2];
%! A(:, :, 2) = [3, 4];
%! A(:, :, 3) = [5, 6];
%! ret(:, :, 1) = 2.2361;
%! ret(:, :, 2) = 5;
%! ret(:, :, 3) = 7.8102;
%! assert (vecnorm (A), ret, 1e-4);

## Test input validation
%!error <Invalid call> vecnorm ()
%!error <A must be numeric> vecnorm ({1})
%!error <P must be positive real scalar> vecnorm (1, [1 2])
%!error <P must be positive real scalar> vecnorm (1, i)
%!error <P must be positive real scalar> vecnorm (1, -1)
%!error <P must be positive real scalar> vecnorm (1, 0)
%!error <DIM must be a positive integer> vecnorm (1, 2, [1 2])
%!error <DIM must be a positive integer> vecnorm (1, 2, -1)
%!error <DIM must be a positive integer> vecnorm (1, 2, 0)
%!error <DIM must be a positive integer> vecnorm (1, 2, 1.5)