1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{n} =} vecnorm (@var{A})
## @deftypefnx {} {@var{n} =} vecnorm (@var{A}, @var{p})
## @deftypefnx {} {@var{n} =} vecnorm (@var{A}, @var{p}, @var{dim})
## Return the vector p-norm of the elements of array @var{A} along dimension
## @var{dim}.
##
## The p-norm of a vector is defined as
##
## @tex
## $$ {\Vert A \Vert}_p = \left[ \sum_{i=1}^N {| A_i |}^p \right] ^ {1/p} $$
## @end tex
## @ifnottex
##
## @example
## @var{p-norm} (@var{A}, @var{p}) = (sum (abs (@var{A}) .^ @var{p})) ^ (1/@var{p})
## @end example
##
## @end ifnottex
## The input @var{p} must be a positive scalar. If omitted it defaults to 2
## (Euclidean norm or distance). Other special values of @var{p} are 1
## (Manhattan norm, sum of absolute values) and @code{Inf} (absolute value of
## largest element).
##
## The input @var{dim} specifies the dimension of the array on which the
## function operates and must be a positive integer. If omitted the first
## non-singleton dimension is used.
##
## @seealso{norm}
## @end deftypefn
function n = vecnorm (A, p = 2, dim)
if (nargin < 1)
print_usage ();
endif
if (! isnumeric (A))
error ("vecnorm: A must be numeric");
endif
if (! (isscalar (p) && isreal (p) && p > 0))
error ("vecnorm: P must be positive real scalar or Inf");
endif
if (nargin < 3)
## Find the first non-singleton dimension.
(dim = find (size (A) > 1, 1)) || (dim = 1);
elseif (! (isscalar (dim) && isindex (dim)))
error ("vecnorm: DIM must be a positive integer");
endif
## Calculate norm using the value of p to accelerate special cases
switch (p)
case {1}
n = sum (abs (A), dim);
case {2}
n = sqrt (sumsq (A, dim));
case {Inf}
n = max (abs (A), [], dim);
otherwise
if (rem (p,2) == 0)
## Even index such as 2,4,6 are specifically accelerated in math
## libraries. Beyond 6, it doesn't matter which method is used.
if (iscomplex (A))
n = (sum ((real (A).^2 + imag (A).^2) .^ (p/2), dim)) .^ (1 / p);
else
n = (sum (A.^2 .^ (p/2), dim)) .^ (1 / p);
endif
else
n = (sum (abs (A) .^ p, dim)) .^ (1 / p);
endif
endswitch
endfunction
%!test
%! A = [0 1 2; 3 4 5];
%! c = vecnorm (A);
%! r = vecnorm (A, 2, 2);
%! i = vecnorm (A, Inf);
%! assert (c, [3.0000, 4.1231, 5.3852], 1e-4);
%! assert (r, [2.2361; 7.0711], 1e-4);
%! assert (i, [3, 4, 5]);
%!test
%! A = [1, 2];
%! assert (vecnorm (A), 2.2361, 1e-4);
%!test
%! A(:, :, 1) = [1, 2];
%! A(:, :, 2) = [3, 4];
%! A(:, :, 3) = [5, 6];
%! ret(:, :, 1) = 2.2361;
%! ret(:, :, 2) = 5;
%! ret(:, :, 3) = 7.8102;
%! assert (vecnorm (A), ret, 1e-4);
## Test input validation
%!error <Invalid call> vecnorm ()
%!error <A must be numeric> vecnorm ({1})
%!error <P must be positive real scalar> vecnorm (1, [1 2])
%!error <P must be positive real scalar> vecnorm (1, i)
%!error <P must be positive real scalar> vecnorm (1, -1)
%!error <P must be positive real scalar> vecnorm (1, 0)
%!error <DIM must be a positive integer> vecnorm (1, 2, [1 2])
%!error <DIM must be a positive integer> vecnorm (1, 2, -1)
%!error <DIM must be a positive integer> vecnorm (1, 2, 0)
%!error <DIM must be a positive integer> vecnorm (1, 2, 1.5)
|