File: memory.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (298 lines) | stat: -rw-r--r-- 10,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
########################################################################
##
## Copyright (C) 2020-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} memory ()
## @deftypefnx {} {[@var{userdata}, @var{systemdata}] =} memory ()
## Display or return information about the memory usage of Octave.
##
## If the function is called without output arguments, a table with an overview
## of the current memory consumption is displayed.
##
## The output argument @var{userdata} is a structure with the following fields
## containing data for the Octave process:
##
## @table @code
## @item MaxPossibleArrayBytes
## Maximum size for an array to be allocated.  Be aware that this includes
## @emph{all} physical memory and swap space.  Allocating that amount of memory
## might result in system instability, data corruption, and/or file system
## corruption.  Note that depending on the platform (32-bit systems), the
## largest contiguous memory block might further limit the maximum possible
## allocatable array.  This check is not currently implemented.
##
## @item MemAvailableAllArrays
## The total size of available memory in bytes.
##
## @item ram_available_all_arrays
## The maximum size for an array that can be allocated in physical memory
## (excluding swap space).  Note that depending on the platform (32-bit
## systems), the largest contiguous memory block might further limit the
## maximum possible allocatable array.  This check is not currently
## implemented.
##
## @item  MemUsedMATLAB
## @itemx mem_used_octave
## The memory (including swap space) currently used by Octave in bytes.
##
## @item ram_used_octave
## The physical memory (excluding swap space) currently used by Octave in
## bytes.
##
## @end table
##
## The output argument @var{systemdata} is a nested structure with the
## following fields containing information about the system's memory:
##
## @table @code
## @item PhysicalMemory.Available
## The currently available physical memory in bytes.
##
## @item PhysicalMemory.Total
## The total physical memory in bytes.
##
## @item SystemMemory.Available
## The currently available memory (including swap space) in bytes.
##
## @item SystemMemory.Total
## The total memory (including swap space) in bytes.
##
## @item VirtualAddressSpace.Available
## The currently available virtual address space in bytes.
##
## @item VirtualAddressSpace.Total
## The total virtual address space in bytes.
##
## @end table
##
## Example #1 : print formatted table of memory usage
##
## @example
## @group
## memory ()
## @result{}
## System    RAM: 3934008 KiB,  swap: 4087804 KiB
## Octave    RAM:  170596 KiB,  virt: 1347944 KiB
## Free      RAM: 1954940 KiB,  swap: 4087804 KiB
## Available RAM: 2451948 KiB, total: 6042744 KiB
## @end group
## @end example
##
## Example #2 : return structs with memory usage information
##
## @example
## [userdata, systemdata] = memory ()
## @result{}
##  userdata =
##
##    scalar structure containing the fields:
##
##      MaxPossibleArrayBytes = 6.1622e+09
##      MemAvailableAllArrays = 6.1622e+09
##      ram_available_all_arrays = 2.4883e+09
##      MemUsedMATLAB = 1.3825e+09
##      mem_used_octave = 1.3825e+09
##      ram_used_octave = 1.7824e+08
##
##  systemdata =
##
##    scalar structure containing the fields:
##
##      PhysicalMemory =
##
##        scalar structure containing the fields:
##
##          Available = 2.4954e+09
##          Total = 4.0284e+09
##
##      SystemMemory =
##
##        scalar structure containing the fields:
##
##          Available = 6.6813e+09
##          Total = 8.2143e+09
##
##      VirtualAddressSpace =
##
##        scalar structure containing the fields:
##
##          Available = 2.8147e+14
##          Total = 2.8147e+14
## @end example
##
## Programming Note: This function is implemented for Linux and Windows only.
##
## @seealso{computer, getpid, getrusage, nproc, uname}
## @end deftypefn

function [userdata, systemdata] = memory ()

  if ((! isunix () || ismac ()) && ! ispc ())
    if (nargout > 0)
      error ("memory: function not yet implemented for this architecture");
    else
      warning ("memory: function not yet implemented for this architecture");
    endif
    return;
  endif

  kiB = 1024;
  [architecture, bits] = computer ();

  if (isunix () && ! ismac ())
    ## Read values from pseudofiles
    [status, meminfo] = lmemory ();

    ## FIXME: Query the actual size of the user address space,
    ##        e.g., with getrlimit (RLIMIT_AS, rlp)
    if (log2 (bits) > 32)
      ## 64-bit platform
      address_space = 2^48;  # 256 TiB
    else
      ## 32-bit platform
      address_space = 3 * 2^30;  # 3 GiB
    endif

    total_ram = meminfo.MemTotal * kiB;
    total_swap = meminfo.SwapTotal * kiB;
    free_ram = meminfo.MemFree * kiB;
    if (isfield (meminfo, "MemAvailable"))
      available_ram = meminfo.MemAvailable * kiB;
    else
      ## On kernels from before 2014 MemAvailable is not present.
      ## This is a rough estimate that can be used instead.
      available_ram = meminfo.MemFree * kiB;
      if (isfield (meminfo, "Cached"))
        ## Some platforms don't support "Cached" (e.g., Cygwin).
        ## That makes the result even more unreliable. But it might be better
        ## than nothing.
        available_ram += meminfo.Cached * kiB;
      endif
    endif
    free_swap = meminfo.SwapFree * kiB;
    used_ram = status.VmRSS * kiB;
    used_virtual = status.VmSize * kiB;
    avail_virtual = address_space - used_virtual;

  elseif (ispc ())
    [proc, sys] = __wmemory__ ();

    total_ram = sys.TotalPhys;
    total_swap = sys.TotalPageFile;
    available_ram = sys.AvailPhys;
    free_swap = sys.AvailPageFile;
    used_ram = proc.WorkingSetSize;
    used_virtual = proc.WorkingSetSize + proc.PagefileUsage;
    avail_virtual = sys.AvailVirtual;
    address_space = sys.TotalVirtual;

  endif

  available = min (available_ram + free_swap, avail_virtual);
  ram_available = min (available_ram, avail_virtual);

  ## FIXME: On 32-bit systems, the largest possible array is limited by the
  ##        largest contiguous block in memory.
  user.MaxPossibleArrayBytes = available;
  user.MemAvailableAllArrays = available;
  user.ram_available_all_arrays = ram_available;
  user.MemUsedMATLAB = used_virtual;  # For compatibility
  user.mem_used_octave = used_virtual;
  user.ram_used_octave = used_ram;

  syst.PhysicalMemory.Available = available_ram;
  syst.PhysicalMemory.Total = total_ram;
  syst.SystemMemory.Available = available_ram + free_swap;
  syst.SystemMemory.Total = total_ram + total_swap;
  syst.VirtualAddressSpace.Available = avail_virtual;
  syst.VirtualAddressSpace.Total = address_space;

  if (nargout)
    userdata = user;
    systemdata = syst;
  else
    unitsize = kiB;
    unitname = 'kiB';
    disp (sprintf ("Octave is running on %s", architecture))
    disp (sprintf ("System    RAM: %9.0f %s,  swap: %9.0f %s",
                   round (syst.PhysicalMemory.Total / unitsize), unitname,
                   round (total_swap / unitsize), unitname ))
    disp (sprintf ("Octave    RAM: %9.0f %s,  virt: %9.0f %s",
                   round (user.ram_used_octave / unitsize), unitname,
                   round (user.mem_used_octave / unitsize), unitname))
    if (isunix ())
      ## The concept of free vs. available RAM doesn't seem to exist on Windows
      disp (sprintf ("Free      RAM: %9.0f %s,  swap: %9.0f %s",
                     round (free_ram / unitsize), unitname,
                     round (free_swap / unitsize), unitname))
    endif
    disp (sprintf ("Available RAM: %9.0f %s, total: %9.0f %s",
                   round (user.ram_available_all_arrays / unitsize), unitname,
                   round (user.MemAvailableAllArrays / unitsize), unitname))
  endif

endfunction

function [status, meminfo] = lmemory ()

  ## Read pseudo files to gather memory information on Linux

  ## Read the proc/self/status pseudofile.
  ## See https://linuxwiki.de/proc/pid#A.2Fproc.2Fpid.2Fstatus.
  ## It contains a variable number of lines with name-value pairs.

  f = fopen ("/proc/self/status");
  buffer = textscan (f, "%s %s", "delimiter", ':\n');
  fclose (f);
  for i = 1:rows (buffer{1})
    status.(buffer{1}{i}) = textscan (buffer{2}{i}){1};
  endfor

  ## Read the /proc/meminfo pseudofile
  ## see https://linuxwiki.de/proc/meminfo
  ## It contains a variable number of lines with name-value pairs.

  f = fopen ("/proc/meminfo");
  buffer = textscan (f, "%s %s", "delimiter", ':\n');
  fclose (f);
  for i = 1:rows (buffer{1})
    meminfo.(buffer{1}{i}) = textscan (buffer{2}{i}){1};
  endfor

endfunction


%!testif ; (isunix () && ! ismac ()) || ispc ()
%! [user, syst] = memory ();
%! assert (user.mem_used_octave > 0);
%! assert (user.ram_used_octave <= user.mem_used_octave);
%! assert (user.mem_used_octave < syst.SystemMemory.Total);
%! assert (user.MemAvailableAllArrays <= syst.SystemMemory.Available);

%!testif ; (! isunix () || ismac ()) && ! ispc ()
%! fail ("[user] = memory ()",
%!       "function not yet implemented for this architecture");
%! fail ("memory ()", "warning",
%!       "function not yet implemented for this architecture");