1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{t}, @var{y}] =} ode45 (@var{fcn}, @var{trange}, @var{init})
## @deftypefnx {} {[@var{t}, @var{y}] =} ode45 (@var{fcn}, @var{trange}, @var{init}, @var{ode_opt})
## @deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode45 (@dots{})
## @deftypefnx {} {@var{solution} =} ode45 (@dots{})
## @deftypefnx {} {} ode45 (@dots{})
##
## Solve a set of non-stiff Ordinary Differential Equations (non-stiff ODEs)
## with the well known explicit @nospell{Dormand-Prince} method of order 4.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function that defines the ODE: @code{y' = f(t,y)}. The function
## must accept two inputs where the first is time @var{t} and the second is a
## column vector of unknowns @var{y}.
##
## @var{trange} specifies the time interval over which the ODE will be
## evaluated. Typically, it is a two-element vector specifying the initial and
## final times (@code{[tinit, tfinal]}). If there are more than two elements
## then the solution will also be evaluated at these intermediate time
## instances.
##
## By default, @code{ode45} uses an adaptive timestep with the
## @code{integrate_adaptive} algorithm. The tolerance for the timestep
## computation may be changed by using the options @qcode{"RelTol"} and
## @qcode{"AbsTol"}.
##
## @var{init} contains the initial value for the unknowns. If it is a row
## vector then the solution @var{y} will be a matrix in which each column is
## the solution for the corresponding initial value in @var{init}.
##
## The optional fourth argument @var{ode_opt} specifies non-default options to
## the ODE solver. It is a structure generated by @code{odeset}.
##
## The function typically returns two outputs. Variable @var{t} is a
## column vector and contains the times where the solution was found. The
## output @var{y} is a matrix in which each column refers to a different
## unknown of the problem and each row corresponds to a time in @var{t}.
##
## The output can also be returned as a structure @var{solution} which has a
## field @var{x} containing a row vector of times where the solution was
## evaluated and a field @var{y} containing the solution matrix such that each
## column corresponds to a time in @var{x}. Use
## @w{@code{fieldnames (@var{solution})}}@ to see the other fields and
## additional information returned.
##
## If no output arguments are requested, and no @qcode{"OutputFcn"} is
## specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
## @code{odeplot} and the results of the solver are plotted immediately.
##
## If using the @qcode{"Events"} option then three additional outputs may be
## returned. @var{te} holds the time when an Event function returned a zero.
## @var{ye} holds the value of the solution at time @var{te}. @var{ie}
## contains an index indicating which Event function was triggered in the case
## of multiple Event functions.
##
## Example: Solve the @nospell{Van der Pol} equation
##
## @example
## @group
## fvdp = @@(@var{t},@var{y}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
## [@var{t},@var{y}] = ode45 (fvdp, [0, 20], [2, 0]);
## @end group
## @end example
## @seealso{odeset, odeget, ode23, ode15s}
## @end deftypefn
function varargout = ode45 (fcn, trange, init, varargin)
if (nargin < 3)
print_usage ();
endif
solver = "ode45";
order = 5; # runge_kutta_45_dorpri uses local extrapolation
if (nargin >= 4)
if (! isstruct (varargin{1}))
## varargin{1:len} are parameters for fcn
odeopts = odeset ();
funarguments = varargin;
elseif (numel (varargin) > 1)
## varargin{1} is an ODE options structure opt
odeopts = varargin{1};
funarguments = {varargin{2:numel (varargin)}};
else
## varargin{1} is an ODE options structure opt
odeopts = varargin{1};
funarguments = {};
endif
else # nargin == 3
odeopts = odeset ();
funarguments = {};
endif
if (! isnumeric (trange) || ! isvector (trange))
error ("Octave:invalid-input-arg",
"ode45: TRANGE must be a numeric vector");
endif
if (numel (trange) < 2)
error ("Octave:invalid-input-arg",
"ode45: TRANGE must contain at least 2 elements");
elseif (trange(1) == trange(2))
error ("Octave:invalid-input-arg",
"ode45: invalid time span, TRANGE(1) == TRANGE(2)");
else
direction = sign (trange(2) - trange(1));
endif
trange = trange(:);
if (! isnumeric (init) || ! isvector (init))
error ("Octave:invalid-input-arg",
"ode45: INIT must be a numeric vector");
endif
init = init(:);
if (ischar (fcn))
if (! exist (fcn))
error ("Octave:invalid-input-arg",
['ode45: function "' fcn '" not found']);
endif
fcn = str2func (fcn);
endif
if (! is_function_handle (fcn))
error ("Octave:invalid-input-arg",
"ode45: FCN must be a valid function handle");
endif
## FIXME: Warn user if ! isempty (funarguments)
## Not a documented behavior and may be deprecated
## Start preprocessing, have a look which options are set in odeopts,
## check if an invalid or unused option is set
[defaults, classes, attributes] = odedefaults (numel (init),
trange(1), trange(end));
defaults = odeset (defaults, "Refine", 4);
persistent ode45_ignore_options = ...
{"BDF", "InitialSlope", "Jacobian", "JPattern",
"MassSingular", "MaxOrder", "MvPattern", "Vectorized"};
defaults = rmfield (defaults, ode45_ignore_options);
classes = rmfield (classes, ode45_ignore_options);
attributes = rmfield (attributes, ode45_ignore_options);
odeopts = odemergeopts ("ode45", odeopts, defaults, classes, attributes);
odeopts.funarguments = funarguments;
odeopts.direction = direction;
if (! isempty (odeopts.NonNegative))
if (isempty (odeopts.Mass))
odeopts.havenonnegative = true;
else
odeopts.havenonnegative = false;
warning ("Octave:invalid-input-arg",
['ode45: option "NonNegative" is ignored', ...
" when mass matrix is set\n"]);
endif
else
odeopts.havenonnegative = false;
endif
if (isempty (odeopts.OutputFcn) && nargout == 0)
odeopts.OutputFcn = @odeplot;
odeopts.haveoutputfunction = true;
else
odeopts.haveoutputfunction = ! isempty (odeopts.OutputFcn);
endif
if (isempty (odeopts.InitialStep))
odeopts.InitialStep = odeopts.direction * ...
starting_stepsize (order, fcn, trange(1), init,
odeopts.AbsTol, odeopts.RelTol,
strcmpi (odeopts.NormControl,
"on"), odeopts.funarguments);
endif
if (! isempty (odeopts.Mass))
if (isnumeric (odeopts.Mass))
havemasshandle = false;
mass = odeopts.Mass; # constant mass
elseif (is_function_handle (odeopts.Mass))
havemasshandle = true; # mass defined by a function handle
else
error ("Octave:invalid-input-arg",
'ode45: "Mass" field must be a function handle or square matrix');
endif
else # no mass matrix - create a diag-matrix of ones for mass
havemasshandle = false; # mass = diag (ones (length (init), 1), 0);
endif
## Starting the initialization of the core solver ode45
if (havemasshandle) # Handle only the dynamic mass matrix,
if (! strcmp (odeopts.MStateDependence, "none"))
### constant mass matrices have already
mass = @(t,x) odeopts.Mass (t, x, odeopts.funarguments{:});
fcn = @(t,x) mass (t, x, odeopts.funarguments{:}) ...
\ fcn (t, x, odeopts.funarguments{:});
else
mass = @(t) odeopts.Mass (t, odeopts.funarguments{:});
fcn = @(t,x) mass (t, odeopts.funarguments{:}) ...
\ fcn (t, x, odeopts.funarguments{:});
endif
endif
if (numel (trange) > 2)
odeopts.Refine = []; # disable Refine when specific times requested
endif
solution = integrate_adaptive (@runge_kutta_45_dorpri,
order, fcn, trange, init, odeopts);
## Postprocessing, do whatever when terminating integration algorithm
if (odeopts.haveoutputfunction) # Cleanup plotter
feval (odeopts.OutputFcn, [], [], "done", odeopts.funarguments{:});
endif
if (! isempty (odeopts.Events)) # Cleanup event function handling
ode_event_handler ([], [], [], [], [], "done");
endif
## Print additional information if option Stats is set
if (strcmpi (odeopts.Stats, "on"))
nsteps = solution.cntloop; # cntloop from 2..end
nfailed = solution.cntcycles - nsteps; # cntcycl from 1..end
nfevals = 6 * solution.cntcycles + 1; # number of ode evaluations
ndecomps = 0; # number of LU decompositions
npds = 0; # number of partial derivatives
nlinsols = 0; # no. of linear systems solutions
printf ("Number of successful steps: %d\n", nsteps);
printf ("Number of failed attempts: %d\n", nfailed);
printf ("Number of function calls: %d\n", nfevals);
endif
if (nargout == 2)
varargout{1} = solution.output_t; # Time stamps are first output argument
varargout{2} = solution.output_x; # Results are second output argument
elseif (nargout == 1)
varargout{1}.x = solution.ode_t.'; #Time stamps saved in field x (row vect.)
varargout{1}.y = solution.ode_x.'; #Results are saved in field y (row vect.)
varargout{1}.solver = solver; # Solver name is saved in field solver
if (! isempty (odeopts.Events))
varargout{1}.xe = solution.event{3}.'; # Time info when an event occurred
varargout{1}.ye = solution.event{4}.'; # Results when an event occurred
varargout{1}.ie = solution.event{2}.'; # Index info which event occurred
endif
if (strcmpi (odeopts.Stats, "on"))
varargout{1}.stats = struct ();
varargout{1}.stats.nsteps = nsteps;
varargout{1}.stats.nfailed = nfailed;
varargout{1}.stats.nfevals = nfevals;
varargout{1}.stats.npds = npds;
varargout{1}.stats.ndecomps = ndecomps;
varargout{1}.stats.nlinsols = nlinsols;
endif
elseif (nargout > 2)
varargout = cell (1,5);
varargout{1} = solution.output_t;
varargout{2} = solution.output_x;
if (! isempty (odeopts.Events))
varargout{3} = solution.event{3}; # Time info when an event occurred
varargout{4} = solution.event{4}; # Results when an event occurred
varargout{5} = solution.event{2}; # Index info which event occurred
endif
endif
endfunction
%!demo
%! ## Demonstrate convergence order for ode45
%! tol = 1e-5 ./ 10.^[0:8];
%! for i = 1 : numel (tol)
%! opt = odeset ("RelTol", tol(i), "AbsTol", realmin);
%! [t, y] = ode45 (@(t, y) -y, [0, 1], 1, opt);
%! h(i) = 1 / (numel (t) - 1);
%! err(i) = norm (y .* exp (t) - 1, Inf);
%! endfor
%!
%! ## Estimate order visually
%! loglog (h, tol, "-ob",
%! h, err, "-b",
%! h, (h/h(end)) .^ 4 .* tol(end), "k--",
%! h, (h/h(end)) .^ 5 .* tol(end), "k-");
%! axis tight
%! xlabel ("h");
%! ylabel ("err(h)");
%! title ("Convergence plot for ode45");
%! legend ("imposed tolerance", "ode45 (relative) error",
%! "order 4", "order 5", "location", "northwest");
%!
%! ## Estimate order numerically
%! p = diff (log (err)) ./ diff (log (h))
## We are using the Van der Pol equation for all tests.
## Further tests also define a reference solution (computed at high accuracy)
%!function ydot = fpol (t, y, varargin) # The Van der Pol ODE
%! ydot = [y(2); (1 - y(1)^2) * y(2) - y(1)];
%!endfunction
%!function ref = fref () # The computed reference solution
%! ref = [0.32331666704577, -1.83297456798624];
%!endfunction
%!function [val, trm, dir] = feve (t, y, varargin)
%! val = fpol (t, y, varargin{:}); # We use the derivatives
%! trm = zeros (2,1); # that's why component 2
%! dir = ones (2,1); # does not seem to be exact
%!endfunction
%!function [val, trm, dir] = fevn (t, y, varargin)
%! val = fpol (t, y, varargin{:}); # We use the derivatives
%! trm = ones (2,1); # that's why component 2
%! dir = ones (2,1); # does not seem to be exact
%!endfunction
%!function mas = fmas (t, y, varargin)
%! mas = [1, 0; 0, 1]; # Dummy mass matrix for tests
%!endfunction
%!function mas = fmsa (t, y, varargin)
%! mas = sparse ([1, 0; 0, 1]); # A sparse dummy matrix
%!endfunction
%!function out = fout (t, y, flag, varargin)
%! out = false;
%! if (strcmp (flag, "init"))
%! if (! isequal (size (t), [2, 1]))
%! error ('fout: step "init"');
%! endif
%! elseif (isempty (flag))
%! # Multiple steps can be sent in one function call
%! if (! isequal ( size (t), size (y)))
%! error ('fout: step "calc"');
%! endif
%! elseif (strcmp (flag, "done"))
%! if (! isempty (t))
%! warning ('fout: step "done"');
%! endif
%! else
%! error ("fout: invalid flag <%s>", flag);
%! endif
%!endfunction
%!function stop_solve = OutputSel_test (t, y, flag, x)
%! ## x == 1: select y(1)
%! ## x == 2: select y(2)
%! ## x == 3: select y([1,2])
%! persistent y_last
%! if (strcmp (flag, "init"))
%! y_last = y;
%! if (x == 1 || x == 2)
%! assert (length (y) == 1);
%! elseif (x == 3)
%! assert (length (y) == 2);
%! endif
%! elseif (strcmp (flag, "done"))
%! y_exp = fref ().';
%! if (x < 3)
%! assert (y_last, y_exp(x), 1e-4);
%! else
%! assert (y_last, y_exp, 1e-4);
%! endif
%! else # flag == ""
%! y_last = y(:,end);
%! if (x == 1 || x == 2)
%! assert (length (t) == length (y));
%! else
%! assert (2 * length (t) == length (y(:)));
%! endif
%! endif
%! stop_solve = 0;
%!endfunction
%!
%!test # two output arguments
%! [t, y] = ode45 (@fpol, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test # not too many steps
%! [t, y] = ode45 (@fpol, [0 2], [2 0], odeset("Refine",1));
%! assert (size (t) < 20);
%!test # correct number of steps with Refine
%! [t1, y1] = ode45 (@fpol, [0 2], [2 0], odeset ("Refine", 1));
%! [t2, y2] = ode45 (@fpol, [0 2], [2 0], odeset ("Refine", 4));
%! [t3, y3] = ode45 (@fpol, [0 2], [2 0]); #default Refine=4
%! s = ode45 (@fpol, [0 2], [2 0], odeset ("Refine", 4));
%! assert (length (t2) == length (t3));
%! assert (length (t2) == 4*length (t1) - 3);
%! assert (length (s.x) == length (t1));
%!test # anonymous function instead of real function
%! fvdp = @(t,y) [y(2); (1 - y(1)^2) * y(2) - y(1)];
%! [t, y] = ode45 (fvdp, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test # string instead of function
%! [t, y] = ode45 ("fpol", [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test # extra input arguments passed through
%! [t, y] = ode45 (@fpol, [0 2], [2 0], 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test # empty ODEOPT structure *but* extra input arguments
%! opt = odeset;
%! [t, y] = ode45 (@fpol, [0 2], [2 0], opt, 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test # Solve another anonymous function below zero
%! vref = [0, 14.77810590694212];
%! [t, y] = ode45 (@(t,y) y, [-2 0], 2);
%! assert ([t(end), y(end,:)], vref, 1e-1);
%!test # InitialStep option
%! opt = odeset ("InitialStep", 1e-8, "Refine", 1);
%! [t, y] = ode45 (@fpol, [0 0.2], [2 0], opt);
%! assert ([t(2)-t(1)], [1e-8], 1e-9);
%!test # MaxStep option
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode45 (@fpol, [0 0.2], [2 0], opt);
%! assert ([sol.x(5)-sol.x(4)], [1e-3], 1e-3);
%!test # Solve with intermediate step
%! [t, y] = ode45 (@fpol, [0 1 2], [2 0]);
%! assert (any ((t-1) == 0));
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test # Solve in backward direction starting at t=0
%! vref = [-1.205364552835178, 0.951542399860817];
%! sol = ode45 (@fpol, [0 -2], [2 0]);
%! assert ([sol.x(end); sol.y(:,end)], [-2; vref'], 1e-2);
%!test # Solve in backward direction starting at t=2
%! vref = [-1.205364552835178, 0.951542399860817];
%! sol = ode45 (@fpol, [2 -2], fref);
%! assert ([sol.x(end); sol.y(:,end)], [-2; vref'], 1e-2);
%!test # Solve in backward direction starting at t=2, with intermediate step
%! vref = [-1.205364552835178, 0.951542399860817];
%! [t, y] = ode45 (@fpol, [2 0 -2], fref);
%! idx = find (y < 0, 1, "first") - 1;
%! assert ([t(idx), y(idx,:)], [0,2,0], 1e-2);
%! assert ([t(end), y(end,:)], [-2, vref], 1e-2);
%!test # Solve another anonymous function in backward direction
%! vref = [-1, 0.367879437558975];
%! sol = ode45 (@(t,y) y, [0 -1], 1);
%! assert ([sol.x(end); sol.y(:,end)], vref', 1e-3);
%!test # Solve another anonymous function below zero
%! vref = [0, 14.77810590694212];
%! sol = ode45 (@(t,y) y, [-2 0], 2);
%! assert ([sol.x(end); sol.y(:,end)], vref', 1e-3);
%!test # Solve in backward direction starting at t=0 with MaxStep option
%! vref = [-1.205364552835178, 0.951542399860817];
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode45 (@fpol, [0 -2], [2 0], opt);
%! assert ([abs(sol.x(8)-sol.x(7))], [1e-3], 1e-3);
%! assert ([sol.x(end); sol.y(:,end)], [-2; vref'], 1e-3);
%!test # AbsTol option
%! opt = odeset ("AbsTol", 1e-5);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # AbsTol and RelTol option
%! opt = odeset ("AbsTol", 1e-8, "RelTol", 1e-8);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # RelTol and NormControl option -- higher accuracy
%! opt = odeset ("RelTol", 1e-8, "NormControl", "on");
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-5);
%!test # Keeps initial values while integrating
%! opt = odeset ("NonNegative", 2);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; 2; 0], 0.5);
%!test # OutputSel 1 (see function OutputSel_test for asserts)
%! opt = odeset ("OutputFcn", @(t, y, flag) OutputSel_test (t, y, flag, 1), ...
%! "OutputSel", 1);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%!test # OutputSel 2 (see function OutputSel_test for asserts)
%! opt = odeset ("OutputFcn", @(t, y, flag) OutputSel_test (t, y, flag, 2), ...
%! "OutputSel", 2);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%!test # OutputSel [1,2] (see function OutputSel_test for asserts)
%! opt = odeset ("OutputFcn", @(t, y, flag) OutputSel_test (t, y, flag, 3), ...
%! "OutputSel", [1,2]);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%!test # Stats must add further elements in sol
%! opt = odeset ("Stats", "on");
%! stat_str = evalc ("sol = ode45 (@fpol, [0 2], [2 0], opt);");
%! assert (strncmp (stat_str, "Number of successful steps:", 27));
%! assert (isfield (sol, "stats"));
%! assert (isfield (sol.stats, "nsteps"));
%!test # Events option add further elements in sol
%! opt = odeset ("Events", @feve);
%! sol = ode45 (@fpol, [0 10], [2 0], opt);
%! assert (isfield (sol, "ie"));
%! assert (sol.ie(1), 2);
%! assert (isfield (sol, "xe"));
%! assert (isfield (sol, "ye"));
%!test # Events option, now stop integration
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! sol = ode45 (@fpol, [0 10], [2 0], opt);
%! assert ([sol.ie, sol.xe, sol.ye.'],
%! [2.0, 2.496110, -0.830550, -2.677589], 2e-3);
%!test # Events option, five output arguments
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! [t, y, vxe, ye, vie] = ode45 (@fpol, [0 10], [2 0], opt);
%! assert ([vie, vxe, ye],
%! [2.0, 2.496110, -0.830550, -2.677589], 2e-3);
%!test # Mass option as function
%! opt = odeset ("Mass", @fmas);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # Mass option as matrix
%! opt = odeset ("Mass", eye (2,2));
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # Mass option as sparse matrix
%! opt = odeset ("Mass", sparse (eye (2,2)));
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # Mass option as function and sparse matrix
%! opt = odeset ("Mass", @fmsa);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # Mass option as function and MStateDependence
%! opt = odeset ("Mass", @fmas, "MStateDependence", "strong");
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
## Note: The following options have no effect on this solver
## therefore it makes no sense to test them here:
##
## "BDF"
## "InitialSlope"
## "JPattern"
## "Jacobian"
## "MassSingular"
## "MaxOrder"
## "MvPattern"
## "Vectorized"
%!test # Check that imaginary part of solution does not get inverted
%! sol = ode45 (@(x,y) 1, [0 1], 1i);
%! assert (imag (sol.y), ones (size (sol.y)));
%! [x, y] = ode45 (@(x,y) 1, [0 1], 1i, odeset ("Refine", 1));
%! assert (imag (y), ones (size (y)));
%!error <Invalid call> ode45 ()
%!error <Invalid call> ode45 (1)
%!error <Invalid call> ode45 (1,2)
%!error <TRANGE must be a numeric> ode45 (@fpol, {[0 25]}, [3 15 1])
%!error <TRANGE must be a .* vector> ode45 (@fpol, [0 25; 25 0], [3 15 1])
%!error <TRANGE must contain at least 2 elements> ode45 (@fpol, [1], [3 15 1])
%!error <invalid time span> ode45 (@fpol, [1 1], [3 15 1])
%!error <INIT must be a numeric> ode45 (@fpol, [0 25], {[3 15 1]})
%!error <INIT must be a .* vector> ode45 (@fpol, [0 25], [3 15 1; 3 15 1])
%!error <FCN must be a valid function handle> ode45 (1, [0 25], [3 15 1])
|