File: runge_kutta_23s.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (215 lines) | stat: -rw-r--r-- 7,298 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
########################################################################
##
## Copyright (C) 2013-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{t_next}, @var{x_next}] =} runge_kutta_23s (@var{fcn}, @var{t}, @var{x}, @var{dt})
## @deftypefnx {} {[@var{t_next}, @var{x_next}] =} runge_kutta_23s (@var{fcn}, @var{t}, @var{x}, @var{dt}, @var{options})
## @deftypefnx {} {[@var{t_next}, @var{x_next}] =} runge_kutta_23s (@var{fcn}, @var{t}, @var{x}, @var{dt}, @var{options}, @var{k_vals})
## @deftypefnx {} {[@var{t_next}, @var{x_next}] =} runge_kutta_23s (@var{fcn}, @var{t}, @var{x}, @var{dt}, @var{options}, @var{k_vals}, @var{t_next})
## @deftypefnx {} {[@var{t_next}, @var{x_next}, @var{x_est}] =} runge_kutta_23s (@dots{})
## @deftypefnx {} {[@var{t_next}, @var{x_next}, @var{x_est}, @var{k_vals_out}] =} runge_kutta_23s (@dots{})
##
## This function can be used to integrate a system of ODEs with a given initial
## condition @var{x} from @var{t} to @var{t+dt}, with a Rosenbrock method of
## order (2,3).  All the mathematical formulas are from Shampine, L. F. and
## M. W. Reichelt, "The MATLAB ODE Suite", SIAM Journal on Scientific
## Computing, Vol. 18, 1997, pp. 1–22.
##
## @var{f} is a function handle that defines the ODE: @code{y' = f(tau,y)}.
## The function must accept two inputs where the first is time @var{tau} and
## the second is a column vector of unknowns @var{y}.
##
## @var{t} is the first extreme of integration interval.
##
## @var{x} is the initial condition of the system..
##
## @var{dt} is the timestep, that is the length of the integration interval.
##
## The optional fourth argument @var{options} specifies options for the ODE
## solver.  It is a structure generated by @code{odeset}.  In particular it
## contains the field @var{funarguments} with the optional arguments to be used
## in the evaluation of @var{fcn}.
##
## The optional fifth argument @var{k_vals_in} contains the Runge-Kutta
## evaluations of the previous step to use in a FSAL scheme.
##
## The optional sixth argument @var{t_next} (@code{t_next = t + dt}) specifies
## the end of the integration interval.  The output @var{x_next} s the higher
## order computed solution at time @var{t_next} (local extrapolation is
## performed).
##
## Optionally the functions can also return @var{x_est}, a lower order solution
## for the estimation of the error, and @var{k_vals_out}, a matrix containing
## the Runge-Kutta evaluations to use in a FSAL scheme or for dense output.
##
## @seealso{runge_kutta_23}
## @end deftypefn

function [t_next, x_next, x_est, k] = runge_kutta_23s (fcn, t, x, dt,
                                                       options = [],
                                                       k_vals = [],
                                                       t_next = t + dt)

  persistent d = 1 / (2 + sqrt (2));
  persistent a = 1 / 2;
  persistent e32 = 6 + sqrt (2);

  ## extra arguments for function evaluator
  if (! isempty (options))
    args = options.funarguments;
  else
    args = {};
  endif

  jacfcn = false;
  jacmat = false;
  if (! isempty (options.Jacobian))
    if (ischar (options.Jacobian))
      jacfcn = true;
      jac = str2fun (options.Jacobian);
    elseif (is_function_handle (options.Jacobian))
      jacfcn = true;
      jac = options.Jacobian;
    elseif (ismatrix (options.Jacobian))
      jacmat = true;
      jac = options.Jacobian;
    else
      error (["ode23s: the jacobian should be passed as a matrix, ", ...
        "a string or a function handle"])
    endif
  endif

  jacpat = false;
  if (! isempty (options.JPattern))
    jacpat = true;
    pattern = logical (options.JPattern);
  endif

  ## Jacobian matrix, dfxpdp
  if (jacmat)
    J = jac;
  elseif (jacfcn)
    J = jac (t, x);
  elseif (! jacpat)
    J = __dfxpdp__ (x, @(a) feval (fcn, t, a, args{:}), options.RelTol);
  elseif (jacpat)
    J = __dfxpdp__ (x, @(a) feval (fcn, t, a, args{:}), options.RelTol, pattern);
  endif

  T = (feval (fcn, t + .1 * dt, x) - feval (fcn, t, x, args{:})) / (.1 * dt);

  ## Wolfbrandt coefficient
  if (isempty (options.Mass))
    M = speye (length (x));
  else
    M = options.Mass;
  endif
  W = M - dt*d*J;

  if (issparse (W))
    [Lw, Uw, Pw, Qw, Rw] = lu  (W);
  else
    [Lw, Uw, Pw] = lu (W);
  endif

  ## compute the slopes
  F(:,1) = feval (fcn, t, x, args{:});
  if (issparse (W))
    k(:,1) = Qw * (Uw \ (Lw \ (Pw * (Rw \ (F(:,1) + dt*d*T)))));
  else
    k(:,1) = Uw \ (Lw \ (Pw * (F(:,1) + dt*d*T)));
  endif
  F(:,2) = feval (fcn, t+a*dt, x+a*dt*k(:,1), args{:});
  if (issparse (W))
    k(:,2) = Uw * (Uw \ (Lw \ (Pw * (Rw \ (F(:,2) - M*k(:,1)))))) + k(:,1);
  else
    k(:,2) = Uw \ (Lw \ (Pw * (F(:,2) - M*k(:,1)))) + k(:,1);
  endif

  ## compute the 2nd order estimate
  x_next = x + dt*k(:,2);

  if (nargout >= 3)
    ## 3rd order, needed in error formula
    F(:,3) = feval (fcn, t+dt, x_next, args{:});
    if (issparse (W))
      k(:,3) = Qw * (Uw \ (Lw \ (Pw * (Rw \ (F(:,3) - e32 * (M*k(:,2) - F(:,2)) - 2 * (M*k(:,1) - F(:,1)) + dt*d*T)))));
    else
      k(:,3) = Uw \ (Lw \ (Pw * (F(:,3) - e32 * (M*k(:,2) - F(:,2)) - 2 * (M*k(:,1) - F(:,1)) + dt*d*T)));
    endif

    ## estimate the error
    err_est = (dt/6) * (k(:,1) - 2*k(:,2) + k(:,3));

    ## FIXME: to use in AbsRel_Norm function I need x_est and not err directly
    x_est = x_next + err_est;
  endif

endfunction


function prt = __dfxpdp__ (p, fcn, rtol, pattern)

  ## This subfunction was copied 2011 from the OF "optim" package
  ## "inst/private/__dfdp__.m".

  f = fcn (p)(:);
  m = numel (f);
  n = numel (p);

  diffp = rtol .* ones (n, 1);

  del = ifelse (p == 0, diffp, diffp .* p);
  absdel = abs (del);

  ## double sided interval
  p1 = p + absdel / 2;
  p2 = p - absdel / 2;

  ps = p;
  if (nargin > 3 && issparse (pattern))
    prt = pattern;  # initialize Jacobian
    for j = find (any (pattern, 1))
      ps(j) = p1(j);
      tp1 = fcn (ps);
      ps(j) = p2(j);
      tp2 = fcn (ps);
      pattern_nnz = find (pattern(:, j));
      prt(pattern_nnz, j) = (tp1(pattern_nnz) - tp2(pattern_nnz)) / absdel(j);
      ps(j) = p(j);
    endfor
  else
    prt = zeros (m, n); # initialize Jacobian
    for j = 1:n
      ps(j) = p1(j);
      tp1 = fcn (ps);
      ps(j) = p2(j);
      tp2 = fcn (ps);
      prt(:, j) = (tp1(:) - tp2(:)) / absdel(j);
      ps(j) = p(j);
    endfor
  endif

endfunction