1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
########################################################################
##
## Copyright (C) 2015-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{u_interp} =} odemergeopts (@var{order}, @var{z}, @var{t}, @var{u}, @var{k_vals})
## Undocumented internal function.
## @end deftypefn
function u_interp = runge_kutta_interpolate (order, z, u, t, k_vals)
switch (order)
case 1
## Unused
u_interp = interp1 (z, u.', t, "linear");
case 2
## ode23s with Rosenbrock scheme:
der = k_vals(:,1);
u_interp = quadratic_interpolation (z, u, der, t);
case 3
## ode23 with Bogacki-Shampine scheme:
u_interp = hermite_cubic_interpolation (z, u, k_vals, t);
case 5
## ode45 with Dormand-Prince scheme:
u_interp = hermite_quartic_interpolation (z, u, k_vals, t);
otherwise
## This should never happen
warning (["Invalid/unimplemented interpolation order: ", ...
"using linear interpolation instead"]);
u_interp = interp1 (z, u.', t, "linear");
endswitch
endfunction
## The function below can be used in an ODE solver to interpolate the solution
## at the time t_out using 2nd order Hermite interpolation.
function x_out = quadratic_interpolation (t, x, der, t_out)
## coefficients of the parabola
a = -(x(:,1) - x(:,2) - der(:).*(t(1)-t(2))) / (t(1) - t(2))^2;
b = der(:) - 2*t(1).*a;
c = x(:,1) - a*t(1)^2 - b*t(1);
## evaluate in t_out
x_out = a*t_out.^2 + b*t_out + c;
endfunction
## The function below can be used in an ODE solver to interpolate the
## solution at the time t_out using 3rd order Hermite interpolation.
function x_out = hermite_cubic_interpolation (t, x, der, t_out)
dt = (t(2) - t(1));
s = (t_out - t(1)) / dt;
x_out = ((1 + 2*s) .* (1-s).^2) .* x(:,1) + ...
(s .* (1-s).^2 * dt ) .* der(:,1) + ...
((3-2*s) .* s.^2 ) .* x(:,end) + ...
((s-1) .* s.^2 * dt ) .* der(:,end);
endfunction
## The function below can be used in an ODE solver to interpolate the
## solution at the time t_out using 4th order Hermite interpolation.
function x_out = hermite_quartic_interpolation (t, x, der, t_out)
persistent coefs_u_half = ...
[6025192743/30085553152; 0; 51252292925/65400821598;
-2691868925/45128329728; 187940372067/1594534317056;
-1776094331/19743644256; 11237099/235043384];
## 4th order approximation of y in t+dt/2 as proposed by Shampine in
## Lawrence, Shampine, "Some Practical Runge-Kutta Formulas", 1986.
dt = t(2) - t(1);
u_half = x(:,1) + (1/2) * dt * (der(:,1:7) * coefs_u_half);
## Rescale time on [0,1]
s = (t_out - t(1)) / dt;
## Hermite basis functions
## H0 = 1 - 11*s.^2 + 18*s.^3 - 8*s.^4;
## H1 = s - 4*s.^2 + 5*s.^3 - 2*s.^4;
## H2 = 16*s.^2 - 32*s.^3 + 16*s.^4;
## H3 = - 5*s.^2 + 14*s.^3 - 8*s.^4;
## H4 = s.^2 - 3*s.^3 + 2*s.^4;
x_out = (1 - 11*s.^2 + 18*s.^3 - 8*s.^4) .* x(:,1) + ...
( s - 4*s.^2 + 5*s.^3 - 2*s.^4) .* (dt * der(:,1)) + ...
( 16*s.^2 - 32*s.^3 + 16*s.^4) .* u_half + ...
( - 5*s.^2 + 14*s.^3 - 8*s.^4) .* x(:,2) + ...
( s.^2 - 3*s.^3 + 2*s.^4) .* (dt * der(:,end));
endfunction
|