File: fminsearch.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (595 lines) | stat: -rw-r--r-- 19,236 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
########################################################################
##
## Copyright (C) 2003-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} fminsearch (@var{fcn}, @var{x0})
## @deftypefnx {} {@var{x} =} fminsearch (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {} {@var{x} =} fminsearch (@var{problem})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{exitflag}, @var{output}] =} fminsearch (@dots{})
##
## Find a value of @var{x} which minimizes the multi-variable function
## @var{fcn}.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## The search begins at the point @var{x0} and iterates using the
## @nospell{Nelder & Mead} Simplex algorithm (a derivative-free method).  This
## algorithm is better-suited to functions which have discontinuities or for
## which a gradient-based search such as @code{fminunc} fails.
##
## Options for the search are provided in the parameter @var{options} using the
## function @code{optimset}.  Currently, @code{fminsearch} accepts the options:
## @qcode{"Display"}, @qcode{"FunValCheck"},@qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolFun"}, @qcode{"TolX"}.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before optimization is halted.  The default value is
## @code{200 * number_of_variables}, i.e., @code{200 * length (@var{x0})}.
## The value must be a positive integer.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before optimization is halted.  The default value is
## @code{200 * number_of_variables}, i.e., @code{200 * length (@var{x0})}.
## The value must be a positive integer.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.  To initialize an options structure
## with default values for @code{fminsearch} use
## @code{options = optimset ("fminsearch")}.
##
## @code{fminsearch} may also be called with a single structure argument
## with the following fields:
##
## @table @code
## @item objective
## The objective function.
##
## @item x0
## The initial point.
##
## @item solver
## Must be set to @qcode{"fminsearch"}.
##
## @item options
## A structure returned from @code{optimset} or an empty matrix to
## indicate that defaults should be used.
## @end table
##
## @noindent
## The field @code{options} is optional.  All others are required.
##
## On exit, the function returns @var{x}, the minimum point, and @var{fval},
## the function value at the minimum.
##
## The third output @var{exitflag} reports whether the algorithm succeeded and
## may take one of the following values:
##
## @table @asis
## @item 1
## if the algorithm converged
## (size of the simplex is smaller than @code{TolX} @strong{AND} the step in
## function value between iterations is smaller than @code{TolFun}).
##
## @item 0
## if the maximum number of iterations or the maximum number of function
## evaluations are exceeded.
##
## @item -1
## if the iteration is stopped by the @qcode{"OutputFcn"}.
## @end table
##
## The fourth output is a structure @var{output} containing runtime
## about the algorithm.  Fields in the structure are @code{funcCount}
## containing the number of function calls to @var{fcn}, @code{iterations}
## containing the number of iteration steps, @code{algorithm} with the name of
## the search algorithm (always:
## @nospell{@qcode{"Nelder-Mead simplex direct search"}}), and @code{message}
## with the exit message.
##
## Example:
##
## @example
## fminsearch (@@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])
## @end example
##
## Application Notes:
## @enumerate
## @item
## If you need to find the minimum of a single variable function it is
## probably better to use @code{fminbnd}.
## @item
## The legacy, undocumented syntax for passing parameters to @var{fcn} by
## appending them to the input argument list after @var{options} is
## discouraged and will be completely removed in Octave 10.  The
## preferred, cross-platform compatible method of passing parameters to
## @var{fcn} is through use of @ref{Anonymous Functions}.  For specific
## examples of doing so for @code{fminsearch} and other minimization
## functions see the @ref{Minimizers} section of the GNU Octave manual.
## @end enumerate
## @seealso{fminbnd, fminunc, optimset}
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminsearch");

## FIXME: Add support for output function with "state" set to "interrupt".

function [x, fval, exitflag, output] = fminsearch (varargin)

  if (nargin < 1)
    print_usage ();
  endif

  ## Get default options if requested.
  if (nargin == 1 && ischar (varargin{1}) && strcmp (varargin{1}, "defaults"))
    x = struct ("Display", "notify", "FunValCheck", "off",
                "MaxFunEvals", [], "MaxIter", [],
                "OutputFcn", [],
                "TolFun", 1e-4, "TolX", 1e-4);
    return;
  endif

  if (nargin == 1)
    problem = varargin{1};
    varargin = {};
    if (! isstruct (problem))
      error ("fminsearch: PROBLEM must be a structure");
    endif
    fcn = problem.objective;
    x0 = problem.x0;
    if (! strcmp (problem.solver, "fminsearch"))
      error ('fminsearch: problem.solver must be set to "fminsearch"');
    endif
    if (isfield (problem, "options"))
      options = problem.options;
    else
      options = [];
    endif
  elseif (nargin > 1)
    fcn = varargin{1};
    x0 = varargin{2};
    if (nargin > 2)
      options = varargin{3};
      varargin(1:3) = [];
    else
      options = [];
      varargin = {};
    endif
  endif

  if (ischar (fcn))
    fcn = str2func (fcn);
  endif

  if (isempty (options))
    options = struct ();
  endif

  [x, exitflag, output] = nmsmax (fcn, x0, options, varargin{:});

  if (nargout > 1)
    fval = feval (fcn, x, varargin{:});
  endif

endfunction

## NMSMAX  Nelder-Mead simplex method for direct search optimization.
##        [x, fmax, nf] = NMSMAX(FCN, x0, STOPIT, SAVIT) attempts to
##        maximize the function FCN, using the starting vector x0.
##        The Nelder-Mead direct search method is used.
##        Output arguments:
##               x    = vector yielding largest function value found,
##               fmax = function value at x,
##               nf   = number of function evaluations.
##        The iteration is terminated when either
##               - the relative size of the simplex is <= STOPIT(1)
##                 (default 1e-3),
##               - STOPIT(2) function evaluations have been performed
##                 (default inf, i.e., no limit), or
##               - a function value equals or exceeds STOPIT(3)
##                 (default inf, i.e., no test on function values).
##        The form of the initial simplex is determined by STOPIT(4):
##           STOPIT(4) = 0: regular simplex (sides of equal length, the default)
##           STOPIT(4) = 1: right-angled simplex.
##        Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
##           STOPIT(6) indicates the direction (i.e., minimization or
##                   maximization.) Default is 1, maximization.
##                   set STOPIT(6)=-1 for minimization
##        If a non-empty fourth parameter string SAVIT is present, then
##        'SAVE SAVIT x fmax nf' is executed after each inner iteration.
##        NB: x0 can be a matrix.  In the output argument, in SAVIT saves,
##            and in function calls, x has the same shape as x0.
##        NMSMAX(FCN, x0, STOPIT, SAVIT, P1, P2,...) allows additional
##        arguments to be passed to FCN, via feval(FCN,x,P1,P2,...).
## References:
## N. J. Higham, Optimization by direct search in matrix computations,
##    SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
## C. T. Kelley, Iterative Methods for Optimization, Society for Industrial
##    and Applied Mathematics, Philadelphia, PA, 1999.

## From Matrix Toolbox
## Copyright (C) 2002, 2013 N.J.Higham
## www.maths.man.ac.uk/~higham/mctoolbox
##
## Modifications for Octave by A.Adler 2003

function [stopit, savit, dirn, trace, tol, maxiter, tol_f, outfcn] = ...
                                                     parse_options (options, x)

  ## Tolerance for cgce test based on relative size of simplex.
  stopit(1) = tol = optimget (options, "TolX", 1e-4);

  ## Tolerance for cgce test based on step in function value.
  tol_f = optimget (options, "TolFun", 1e-4);

  ## Max number of function evaluations.
  stopit(2) = optimget (options, "MaxFunEvals", 200 * length (x));

  ## Max number of iterations
  maxiter = optimget (options, "MaxIter", 200 * length (x));

  ## Default target for function values.
  stopit(3) = Inf;  # FIXME: expose this parameter to the outside

  ## Default initial simplex.
  stopit(4) = 0;    # FIXME: expose this parameter to the outside

  ## Default: show progress.
  display = optimget (options, "Display", "notify");
  switch (display)
    case "iter"
      stopit(5) = 1;
    case "final"
      stopit(5) = 2;
    case "notify"
      stopit(5) = 3;
    otherwise  # "none"
      stopit(5) = 0;
  endswitch
  trace = stopit(5);

  ## Use function to minimize, not maximize
  stopit(6) = dirn = -1;

  ## Filename for snapshots.
  savit = [];  # FIXME: expose this parameter to the outside

  ## OutputFcn
  outfcn = optimget (options, "OutputFcn");

endfunction

function [x, exitflag, output] = nmsmax (fcn, x, options, varargin)

  [stopit, savit, dirn, trace, tol, maxiter, tol_f, outfcn] = ...
                                                    parse_options (options, x);

  if (strcmpi (optimget (options, "FunValCheck", "off"), "on"))
    ## Replace fcn with a guarded version.
    fcn = @(x) guarded_eval (fcn, x, varargin{:});
  else
    fcn = @(x) real (fcn (x, varargin{:}));
  endif

  x0 = x(:);  # Work with column vector internally.
  n = length (x0);

  V = [zeros(n,1) eye(n)];
  f = zeros (n+1,1);
  V(:,1) = x0;
  f(1) = dirn * fcn (x);
  fmax_old = f(1);
  nf = 1;

  if (trace == 1)
    printf ("f(x0) = %9.4e\n", dirn * f(1));
  endif

  k = 0; m = 0;

  ## Set up initial simplex.
  scale = max (norm (x0, Inf), 1);
  if (stopit(4) == 0)
    ## Regular simplex - all edges have same length.
    ## Generated from construction given in reference [18, pp. 80-81] of [1].
    alpha = scale / (n*sqrt (2)) * [sqrt(n+1)-1+n, sqrt(n+1)-1];
    V(:,2:n+1) = (x0 + alpha(2)*ones (n,1)) * ones (1,n);
    for j = 2:n+1
      V(j-1,j) = x0(j-1) + alpha(1);
      x(:) = V(:,j);
      f(j) = dirn * fcn (x);
    endfor
  else
    ## Right-angled simplex based on co-ordinate axes.
    alpha = scale * ones (n+1,1);
    for j = 2:n+1
      V(:,j) = x0 + alpha(j)*V(:,j);
      x(:) = V(:,j);
      f(j) = dirn * fcn (x);
    endfor
  endif
  nf += n;
  how = "initial  ";

  [~, j] = sort (f);
  j = j(n+1:-1:1);
  f = f(j);
  V = V(:,j);

  exitflag = 0;

  if (! isempty (outfcn))
    optimvalues.iteration = 0;
    optimvalues.funccount = nf;
    optimvalues.fval = dirn * f(1);
    optimvalues.procedure = how;
    state = "init";
    stop = outfcn (x, optimvalues, state);
    if (stop)
      msg = "Stopped by OutputFcn\n";
      exitflag = -1;
    endif
  endif

  alpha = 1;  beta = 1/2;  gamma = 2;

  while (exitflag != -1)   # Outer (and only) loop.
    k += 1;

    if (k > maxiter)
      msg = "Exceeded maximum iterations\n";
      break;
    endif

    fmax = f(1);
    if (fmax > fmax_old)
      if (! isempty (savit))
        x(:) = V(:,1);
        eval (["save " savit " x fmax nf"]);
      endif
    endif
    if (trace == 1)
      printf ("Iter. %2.0f,", k);
      printf ("  how = %-11s", [how ","]);
      printf ("nf = %3.0f,  f = %9.4e  (%2.1f%%)\n", nf, dirn * fmax, ...
              100*(fmax-fmax_old)/(abs (fmax_old)+eps));
    endif
    fmax_old = fmax;

    ## Three stopping tests from MDSMAX.M

    ## Stopping Test 1 - f reached target value?
    if (fmax >= stopit(3))
      msg = "Exceeded target...quitting\n";
      ## FIXME: Add documentation when stopit(3) gets exposed to the outside
      exitflag = -1;
      break;
    endif

    ## Stopping Test 2 - too many f-evals?
    if (nf >= stopit(2))
      msg = "Exceeded maximum number of function evaluations\n";
      exitflag = 0;
      break;
    endif

    ## Stopping Test 3 - converged?   The first part is test (4.3) in [1].
    v1 = V(:,1);
    size_simplex = norm (V(:,2:n+1)-v1(:,ones (1,n)),1) / max (1, norm (v1,1));
    step_f = max (abs (f(1) - f(2:n+1)));
    if (size_simplex <= tol && step_f <= tol_f )
      msg = sprintf (["Algorithm converged.  Simplex size %9.4e <= %9.4e ", ...
                      "and step in function value %9.4e <= %9.4e\n"], ...
                      size_simplex, tol, step_f, tol_f);
      exitflag = 1;
      break;
    endif

    ## Call OutputFcn
    if (! isempty (outfcn))
      optimvalues.funccount = nf;
      optimvalues.fval = dirn * f(1);
      optimvalues.iteration = k;
      optimvalues.procedure = how;
      state = "iter";
      stop = outfcn (x, optimvalues, state);
      if (stop)
        msg = "Stopped by OutputFcn\n";
        exitflag = -1;
        break;
      endif
    endif

    ##  One step of the Nelder-Mead simplex algorithm
    ##  NJH: Altered function calls and changed CNT to NF.
    ##       Changed each 'fr < f(1)' type test to '>' for maximization
    ##       and re-ordered function values after sort.

    vbar = (sum (V(:,1:n)')/n)';  # Mean value
    vr = (1 + alpha)*vbar - alpha*V(:,n+1);
    x(:) = vr;
    fr = dirn * fcn (x);
    nf += 1;
    vk = vr;  fk = fr; how = "reflect";
    if (fr > f(n))
      if (fr > f(1))
        ve = gamma*vr + (1-gamma)*vbar;
        x(:) = ve;
        fe = dirn * fcn (x);
        nf += 1;
        if (fe > f(1))
          vk = ve;
          fk = fe;
          how = "expand";
        endif
      endif
    else
      vt = V(:,n+1);
      ft = f(n+1);
      if (fr > ft)
        vt = vr;
        ft = fr;
      endif
      vc = beta*vt + (1-beta)*vbar;
      x(:) = vc;
      fc = dirn * fcn (x);
      nf += 1;
      if (fc > f(n))
        vk = vc; fk = fc;
        how = "contract";
      else
        for j = 2:n
          V(:,j) = (V(:,1) + V(:,j))/2;
          x(:) = V(:,j);
          f(j) = dirn * fcn (x);
        endfor
        nf += n-1;
        vk = (V(:,1) + V(:,n+1))/2;
        x(:) = vk;
        fk = dirn * fcn (x);
        nf += 1;
        how = "shrink";
      endif
    endif
    V(:,n+1) = vk;
    f(n+1) = fk;
    [~,j] = sort(f);
    j = j(n+1:-1:1);
    f = f(j);
    V = V(:,j);

  endwhile   # End of outer (and only) loop.

  ## Finished.
  if ( (trace == 1) || (trace == 2) || (trace == 3 && exitflag != 1) )
    printf (msg);
  endif
  x(:) = V(:,1);

  ## FIXME: Should outputfcn be called only if exitflag != 0,
  ##        i.e., only when we have successfully converged?
  if (! isempty (outfcn))
    optimvalues.funccount = nf;
    optimvalues.fval = dirn * f(1);
    optimvalues.iteration = k;
    optimvalues.procedure = how;
    state = "done";
    outfcn (x, optimvalues, state);
  endif

  ## output
  output.iterations = k;
  output.funcCount = nf;
  output.algorithm = "Nelder-Mead simplex direct search";
  output.message = msg;

endfunction

## A helper function that evaluates a function and checks for bad results.
function y = guarded_eval (fcn, x, varargin)

  y = fcn (x, varargin{:});

  if (! (isreal (y)))
    error ("fminsearch:notreal", "fminsearch: non-real value encountered");
  elseif (any (isnan (y(:))))
    error ("fminsearch:isnan", "fminsearch: NaN value encountered");
  elseif (any (isinf (y(:))))
    error ("fminsearch:isinf", "fminsearch: Inf value encountered");
  endif

endfunction


%!demo
%! clf;
%! hold on;
%! draw_fcn = @(x) (plot (x(1), x(2)) && false);
%! fcn = @(x) (x(1)-5).^2 + (x(2)-8).^4;
%! x0 = [0;0];
%! [xmin, fval] = fminsearch (fcn, x0, optimset ("OutputFcn", draw_fcn))
%! hold off;

%!assert (fminsearch (@sin, 3, optimset ("MaxIter", 30)), 3*pi/2, 1e-4)

## FIXME: The following test is for checking that fminsearch stops earlier
##        with these settings.  If the optimizer algorithm is changed, it
##        may fail.  Just adapt the values to make it pass again.
%!test
%! x = fminsearch (@sin, 3, optimset ("MaxIter", 3, "Display", "none"));
%! assert (x, 4.8750, 1e-4);
%! x = fminsearch (@sin, 3, optimset ("MaxFunEvals", 18, "Display", "none"));
%! assert (x, 4.7109, 1e-4);

%!test
%! problem.objective = @sin;
%! problem.x0 = 3;
%! problem.solver = "fminsearch";
%! problem.options = optimset ("MaxIter", 3, "Display", "none");
%! x = fminsearch (problem);
%! assert (x, 4.8750, 1e-4);
%! problem.options = optimset ("MaxFunEvals", 18, "Display", "none");
%! x = fminsearch (problem);
%! assert (x, 4.7109, 1e-4);

%!test
%! c = 1.5;
%! assert (fminsearch (@(x) x(1).^2 + c*x(2).^2, [1;1]), [0;0], 1e-4);

## additional input argument
%!test
%! x1 = fminsearch (@(x, c) x(1).^2 + c*x(2).^2, [1;1], [], 1.5);
%! assert (x1, [0;0], 1e-4);
%! x1 = fminsearch (@(x, c) c(1)*x(1).^2 + c(2)*x(2).^2, [1;1], ...
%!                  optimset ("Display", "none"), [1 1.5]);
%! assert (x1, [0;0], 1e-4);

## all output arguments
%!test
%! options = optimset ("Display", "none", "TolX", 1e-4, "TolFun", 1e-7);
%! [x, fval, exitflag, output] = fminsearch (@sin, 3, options);
%! assert (x, 3*pi/2, options.TolX);
%! assert (fval, -1, options.TolFun);
%! assert (exitflag, 1);
%! assert (isstruct (output));
%! assert (isfield (output, "iterations") && isnumeric (output.iterations)
%!         && isscalar (output.iterations) && output.iterations > 0);
%! assert (isfield (output, "funcCount") && isnumeric (output.funcCount)
%!         && isscalar (output.funcCount) && output.funcCount > 0);
%! assert (isfield (output, "algorithm") && ischar (output.algorithm));
%! assert (isfield (output, "message") && ischar (output.message));

## Tests for guarded_eval
%!error <non-real value encountered>
%! fminsearch (@(x) ([0 2i]), 0, optimset ("FunValCheck", "on"));
%!error <NaN value encountered>
%! fminsearch (@(x) (NaN), 0, optimset ("FunValCheck", "on"));
%!error <Inf value encountered>
%! fminsearch (@(x) (Inf), 0, optimset ("FunValCheck", "on"));

## Test input validation
%!error <Invalid call> fminsearch ()
%!error fminsearch (1)