1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} fsolve (@var{fcn}, @var{x0})
## @deftypefnx {} {@var{x} =} fsolve (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}] =} fsolve (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}] =} fsolve (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fsolve (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}, @var{fjac}] =} fsolve (@dots{})
## Solve a system of nonlinear equations defined by the function @var{fcn}.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function to evaluate. @var{fcn} should accept a vector (array)
## defining the unknown variables, and return a vector of left-hand sides of
## the equations. Right-hand sides are defined to be zeros. In other words,
## this function attempts to determine a vector @var{x} such that
## @code{@var{fcn} (@var{x})} gives (approximately) all zeros.
##
## @var{x0} is an initial guess for the solution. The shape of @var{x0} is
## preserved in all calls to @var{fcn}, but otherwise is treated as a column
## vector.
##
## @var{options} is a structure specifying additional parameters which
## control the algorithm. Currently, @code{fsolve} recognizes these options:
## @qcode{"AutoScaling"}, @qcode{"ComplexEqn"}, @qcode{"FinDiffType"},
## @qcode{"FunValCheck"}, @qcode{"Jacobian"}, @qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolFun"}, @qcode{"TolX"},
## @qcode{"TypicalX"}, and @qcode{"Updating"}.
##
## If @qcode{"AutoScaling"} is @qcode{"on"}, the variables will be
## automatically scaled according to the column norms of the (estimated)
## Jacobian. As a result, @qcode{"TolFun"} becomes scaling-independent. By
## default, this option is @qcode{"off"} because it may sometimes deliver
## unexpected (though mathematically correct) results.
##
## If @qcode{"ComplexEqn"} is @qcode{"on"}, @code{fsolve} will attempt to solve
## complex equations in complex variables, assuming that the equations possess
## a complex derivative (i.e., are holomorphic). If this is not what you want,
## you should unpack the real and imaginary parts of the system to get a real
## system.
##
## If @qcode{"Jacobian"} is @qcode{"on"}, it specifies that @var{fcn}---when
## called with 2 output arguments---also returns the Jacobian matrix of
## right-hand sides at the requested point.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before optimization is halted. The default value is
## @code{100 * number_of_variables}, i.e., @code{100 * length (@var{x0})}.
## The value must be a positive integer.
##
## If @qcode{"Updating"} is @qcode{"on"}, the function will attempt to use
## @nospell{Broyden} updates to update the Jacobian, in order to reduce the
## number of Jacobian calculations. If your user function always calculates
## the Jacobian (regardless of number of output arguments) then this option
## provides no advantage and should be disabled.
##
## @qcode{"TolX"} specifies the termination tolerance in the unknown variables,
## while @qcode{"TolFun"} is a tolerance for equations. Default is @code{1e-6}
## for both @qcode{"TolX"} and @qcode{"TolFun"}.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}. To initialize an options structure
## with default values for @code{fsolve} use
## @code{options = optimset ("fsolve")}.
##
## The first output @var{x} is the solution while the second output @var{fval}
## contains the value of the function @var{fcn} evaluated at @var{x} (ideally
## a vector of all zeros).
##
## The third output @var{info} reports whether the algorithm succeeded and may
## take one of the following values:
##
## @table @asis
## @item 1
## Converged to a solution point. Relative residual error is less than
## specified by @code{TolFun}.
##
## @item 2
## Last relative step size was less than @code{TolX}.
##
## @item 3
## Last relative decrease in residual was less than @code{TolFun}.
##
## @item 0
## Iteration limit (either @code{MaxIter} or @code{MaxFunEvals}) exceeded.
##
## @item -1
## Stopped by @code{OutputFcn}.
##
## @item -2
## The Jacobian became excessively small and the search stalled.
##
## @item -3
## The trust region radius became excessively small.
## @end table
##
## @var{output} is a structure containing runtime information about the
## @code{fsolve} algorithm. Fields in the structure are:
##
## @table @code
## @item iterations
## Number of iterations through loop.
##
## @item successful
## Number of successful iterations.
##
## @item @nospell{funcCount}
## Number of function evaluations.
##
## @end table
##
## The final output @var{fjac} contains the value of the Jacobian evaluated
## at @var{x}.
##
## Note: If you only have a single nonlinear equation of one variable, using
## @code{fzero} is usually a much better idea.
##
## Note about user-supplied Jacobians:
## As an inherent property of the algorithm, a Jacobian is always requested for
## a solution vector whose residual vector is already known, and it is the last
## accepted successful step. Often this will be one of the last two calls, but
## not always. If the savings by reusing intermediate results from residual
## calculation in Jacobian calculation are significant, the best strategy is to
## employ @code{OutputFcn}: After a vector is evaluated for residuals, if
## @code{OutputFcn} is called with that vector, then the intermediate results
## should be saved for future Jacobian evaluation, and should be kept until a
## Jacobian evaluation is requested or until @code{OutputFcn} is called with a
## different vector, in which case they should be dropped in favor of this most
## recent vector. A short example how this can be achieved follows:
##
## @example
## function [fval, fjac] = user_fcn (x, optimvalues, state)
## persistent sav = [], sav0 = [];
## if (nargin == 1)
## ## evaluation call
## if (nargout == 1)
## sav0.x = x; # mark saved vector
## ## calculate fval, save results to sav0.
## elseif (nargout == 2)
## ## calculate fjac using sav.
## endif
## else
## ## outputfcn call.
## if (all (x == sav0.x))
## sav = sav0;
## endif
## ## maybe output iteration status, etc.
## endif
## endfunction
##
## ## @dots{}
##
## fsolve (@@user_fcn, x0, optimset ("OutputFcn", @@user_fcn, @dots{}))
## @end example
## @seealso{fzero, optimset}
## @end deftypefn
## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fsolve");
function [x, fval, info, output, fjac] = fsolve (fcn, x0, options = struct ())
## Get default options if requested.
if (nargin == 1 && ischar (fcn) && strcmp (fcn, "defaults"))
x = struct ("AutoScaling", "off", "ComplexEqn", "off",
"FunValCheck", "off", "FinDiffType", "forward",
"Jacobian", "off", "MaxFunEvals", [], "MaxIter", 400,
"OutputFcn", [], "Updating", "off", "TolFun", 1e-6,
"TolX", 1e-6, "TypicalX", []);
return;
endif
if (nargin < 2 || ! isnumeric (x0))
print_usage ();
endif
if (ischar (fcn))
fcn = str2func (fcn);
elseif (iscell (fcn))
fcn = @(x) make_fcn_jac (x, fcn{1}, fcn{2});
endif
xsiz = size (x0);
n = numel (x0);
has_jac = strcmpi (optimget (options, "Jacobian", "off"), "on");
cdif = strcmpi (optimget (options, "FinDiffType", "forward"), "central");
maxiter = optimget (options, "MaxIter", 400);
maxfev = optimget (options, "MaxFunEvals", 100*n);
outfcn = optimget (options, "OutputFcn");
updating = strcmpi (optimget (options, "Updating", "off"), "on");
complexeqn = strcmpi (optimget (options, "ComplexEqn", "off"), "on");
## Get scaling matrix using the TypicalX option. If set to "auto", the
## scaling matrix is estimated using the Jacobian.
typicalx = optimget (options, "TypicalX", ones (n, 1));
autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on");
if (! autoscale)
dg = 1 ./ typicalx;
endif
funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
if (funvalchk)
## Replace fcn with a guarded version.
fcn = @(x) guarded_eval (fcn, x, complexeqn);
endif
## These defaults are rather stringent.
## Normally user prefers accuracy to performance.
tolx = optimget (options, "TolX", 1e-6);
tolf = optimget (options, "TolFun", 1e-6);
factor = 1;
niter = 1;
nfev = 1;
x = x0(:);
info = 0;
## Initial evaluation.
## Handle arbitrary shapes of x and f and remember them.
fval = fcn (reshape (x, xsiz));
fsiz = size (fval);
fval = fval(:);
fn = norm (fval);
m = length (fval);
n = length (x);
if (! isempty (outfcn))
optimvalues.iter = niter;
optimvalues.funccount = nfev;
optimvalues.fval = fn;
optimvalues.searchdirection = zeros (n, 1);
state = "init";
stop = outfcn (x, optimvalues, state);
if (stop)
info = -1;
output.iterations = niter;
output.successful = 0;
output.funcCount = nfev;
fjac = NaN;
return;
endif
endif
if (isa (x0, "single") || isa (fval, "single"))
macheps = eps ("single");
else
macheps = eps ("double");
endif
nsuciter = 0;
## Outer loop.
while (niter < maxiter && nfev < maxfev && ! info)
## Calculate function value and Jacobian (possibly via FD).
if (has_jac)
[fval, fjac] = fcn (reshape (x, xsiz));
if (! all (size (fjac) == [m, n]))
error ("fsolve: Jacobian size should be (%d,%d), not (%d,%d)",
m, n, rows (fjac), columns (fjac));
endif
## If the Jacobian is sparse, disable Broyden updating.
if (issparse (fjac))
updating = false;
endif
fval = fval(:);
nfev += 1;
else
fjac = __fdjac__ (fcn, reshape (x, xsiz), fval, typicalx, cdif);
nfev += (1 + cdif) * length (x);
endif
## For square and overdetermined systems, we update a QR factorization of
## the Jacobian to avoid solving a full system in each step. In this case,
## we pass a triangular matrix to __dogleg__.
useqr = updating && m >= n && n > 10;
if (useqr)
## FIXME: Currently, pivoting is mostly useless because the \ operator
## cannot exploit the resulting props of the triangular factor.
## Unpivoted QR is significantly faster so it doesn't seem right to pivot
## just to get invariance. Original MINPACK didn't pivot either,
## at least when qr updating was used.
[q, r] = qr (fjac, 0);
endif
if (autoscale)
## Get column norms, use them as scaling factors.
jcn = norm (fjac, "columns").';
if (niter == 1)
dg = jcn;
dg(dg == 0) = 1;
else
## Rescale adaptively.
## FIXME: the original minpack used the following rescaling strategy:
## dg = max (dg, jcn);
## but it seems not good if we start with a bad guess yielding Jacobian
## columns with large norms that later decrease, because the
## corresponding variable will still be overscaled. Instead, we only
## give the old scaling a small momentum, but do not honor it.
dg = max (0.1*dg, jcn);
endif
endif
if (niter == 1)
xn = norm (dg .* x);
## FIXME: something better?
delta = factor * max (xn, 1);
endif
## It also seems that in the case of fast (and inhomogeneously) changing
## Jacobian, the Broyden updates are of little use, so maybe we could
## skip them if a big disproportional change is expected. The question is,
## of course, how to define the above terms :)
lastratio = 0;
nfail = 0;
nsuc = 0;
decfac = 0.5;
## Inner loop.
while (niter <= maxiter && nfev < maxfev && ! info)
## Get trust-region model (dogleg) minimizer.
if (useqr)
if (norm (r, 1) < macheps * rows (r))
info = -2;
break;
endif
qtf = q'*fval;
s = - __dogleg__ (r, qtf, dg, delta);
w = qtf + r * s;
else
if (norm (fjac, 1) < macheps * rows (fjac))
info = -2;
break;
endif
s = - __dogleg__ (fjac, fval, dg, delta);
w = fval + fjac * s;
endif
sn = norm (dg .* s);
if (niter == 1)
delta = min (delta, sn);
endif
fval1 = fcn (reshape (x + s, xsiz)) (:);
fn1 = norm (fval1);
nfev += 1;
if (fn1 < fn)
## Scaled actual reduction.
actred = 1 - (fn1/fn)^2;
else
actred = -1;
endif
## Scaled predicted reduction, and ratio.
t = norm (w);
if (t < fn)
prered = 1 - (t/fn)^2;
ratio = actred / prered;
else
prered = 0;
ratio = 0;
endif
## Update delta.
if (ratio < min (max (0.1, 0.8*lastratio), 0.9))
nsuc = 0;
nfail += 1;
delta *= decfac;
decfac ^= 1.4142;
if (fn <= tolf*n*xn)
info = 1;
elseif (delta <= 1e1*macheps*xn)
## Trust region became uselessly small.
info = -3;
break;
endif
else
lastratio = ratio;
decfac = 0.5;
nfail = 0;
nsuc += 1;
if (abs (1-ratio) <= 0.1)
delta = 1.4142*sn;
elseif (ratio >= 0.5 || nsuc > 1)
delta = max (delta, 1.4142*sn);
endif
endif
if (ratio >= 1e-4)
## Successful iteration.
x += s;
xn = norm (dg .* x);
fval = fval1;
fn = fn1;
nsuciter += 1;
endif
niter += 1;
## FIXME: should outputfcn be only called after a successful iteration?
if (! isempty (outfcn))
optimvalues.iter = niter;
optimvalues.funccount = nfev;
optimvalues.fval = fn;
optimvalues.searchdirection = s;
state = "iter";
stop = outfcn (x, optimvalues, state);
if (stop)
info = -1;
output.iterations = niter;
output.successful = nsuciter;
output.funcCount = nfev;
break;
endif
endif
## Tests for termination conditions. A mysterious place, anything
## can happen if you change something here...
## The rule of thumb (which I'm not sure M*b is quite following)
## is that for a tolerance that depends on scaling, only 0 makes
## sense as a default value. But 0 usually means uselessly long
## iterations, so we need scaling-independent tolerances wherever
## possible.
## FIXME: Why tolf*n*xn? If abs (e) ~ abs(x) * eps is a vector
## of perturbations of x, then norm (fjac*e) <= eps*n*xn, i.e., by
## tolf ~ eps we demand as much accuracy as we can expect.
if (fn <= tolf*n*xn)
info = 1;
## The following tests done only after successful step.
elseif (ratio >= 1e-4)
## This one is classic. Note that we use scaled variables again,
## but compare to scaled step, so nothing bad.
if (sn <= tolx*xn)
info = 2;
## Again a classic one. It seems weird to use the same tolf
## for two different tests, but that's what M*b manual appears
## to say.
elseif (actred < tolf)
info = 3;
endif
endif
## Criterion for recalculating Jacobian.
if (! updating || nfail == 2 || nsuciter < 2)
break;
endif
## Compute the scaled Broyden update.
if (useqr)
u = (fval1 - q*w) / sn;
v = dg .* ((dg .* s) / sn);
## Update the QR factorization.
[q, r] = qrupdate (q, r, u, v);
else
u = (fval1 - w);
v = dg .* ((dg .* s) / sn);
## update the Jacobian
fjac += u * v';
endif
endwhile
endwhile
## Restore original shapes.
x = reshape (x, xsiz);
fval = reshape (fval, fsiz);
output.iterations = niter;
output.successful = nsuciter;
output.funcCount = nfev;
endfunction
## A helper function that evaluates a function and checks for bad results.
function [fx, jx] = guarded_eval (fcn, x, complexeqn)
if (nargout > 1)
[fx, jx] = fcn (x);
else
fx = fcn (x);
jx = [];
endif
if (! complexeqn && ! (isreal (fx) && isreal (jx)))
error ("Octave:fsolve:notreal", "fsolve: non-real value encountered");
elseif (complexeqn && ! (isnumeric (fx) && isnumeric (jx)))
error ("Octave:fsolve:notnum", "fsolve: non-numeric value encountered");
elseif (any (isnan (fx(:))))
error ("Octave:fsolve:isnan", "fsolve: NaN value encountered");
elseif (any (isinf (fx(:))))
error ("Octave:fsolve:isinf", "fsolve: Inf value encountered");
endif
endfunction
function [fx, jx] = make_fcn_jac (x, fcn, fjac)
fx = fcn (x);
if (nargout == 2)
jx = fjac (x);
endif
endfunction
## Solve the double dogleg trust-region least-squares problem:
## Minimize norm (r*x-b) subject to the constraint norm (d.*x) <= delta,
## x being a convex combination of the gauss-newton and scaled gradient.
## FIXME: error checks
## FIXME: handle singularity, or leave it up to mldivide?
function x = __dogleg__ (r, b, d, delta)
## Get Gauss-Newton direction.
x = r \ b;
xn = norm (d .* x);
if (xn > delta)
## GN is too big, get scaled gradient.
s = (r' * b) ./ d;
sn = norm (s);
if (sn > 0)
## Normalize and rescale.
s = (s / sn) ./ d;
## Get the line minimizer in s direction.
tn = norm (r*s);
snm = (sn / tn) / tn;
if (snm < delta)
## Get the dogleg path minimizer.
bn = norm (b);
dxn = delta/xn; snmd = snm/delta;
t = (bn/sn) * (bn/xn) * snmd;
t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
alpha = dxn*(1-snmd^2) / t;
else
alpha = 0;
endif
else
alpha = delta / xn;
snm = 0;
endif
## Form the appropriate convex combination.
x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
endif
endfunction
%!function retval = __f (p)
%! x = p(1);
%! y = p(2);
%! z = p(3);
%! retval = zeros (3, 1);
%! retval(1) = sin (x) + y^2 + log (z) - 7;
%! retval(2) = 3*x + 2^y -z^3 + 1;
%! retval(3) = x + y + z - 5;
%!endfunction
%!test
%! x_opt = [ 0.599054;
%! 2.395931;
%! 2.005014 ];
%! tol = 1.0e-5;
%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);
%!function retval = __f (p)
%! x = p(1);
%! y = p(2);
%! z = p(3);
%! w = p(4);
%! retval = zeros (4, 1);
%! retval(1) = 3*x + 4*y + exp (z + w) - 1.007;
%! retval(2) = 6*x - 4*y + exp (3*z + w) - 11;
%! retval(3) = x^4 - 4*y^2 + 6*z - 8*w - 20;
%! retval(4) = x^2 + 2*y^3 + z - w - 4;
%!endfunction
%!test
%! x_opt = [ -0.767297326653401, 0.590671081117440, ...
%! 1.47190018629642, -1.52719341133957 ];
%! tol = 1.0e-4;
%! [x, fval, info] = fsolve (@__f, [-1, 1, 2, -1]);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);
%!function retval = __f (p)
%! x = p(1);
%! y = p(2);
%! z = p(3);
%! retval = zeros (3, 1);
%! retval(1) = sin (x) + y^2 + log (z) - 7;
%! retval(2) = 3*x + 2^y -z^3 + 1;
%! retval(3) = x + y + z - 5;
%! retval(4) = x*x + y - z*log (z) - 1.36;
%!endfunction
%!test
%! x_opt = [ 0.599054;
%! 2.395931;
%! 2.005014 ];
%! tol = 1.0e-5;
%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);
%!function retval = __f (p)
%! x = p(1);
%! y = p(2);
%! z = p(3);
%! retval = zeros (3, 1);
%! retval(1) = sin (x) + y^2 + log (z) - 7;
%! retval(2) = 3*x + 2^y -z^3 + 1;
%! retval(3) = x + y + z - 5;
%!endfunction
%!test
%! x_opt = [ 0.599054;
%! 2.395931;
%! 2.005014 ];
%! tol = 1.0e-5;
%! opt = optimset ("Updating", "qrp");
%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ], opt);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);
%!test
%! b0 = 3;
%! a0 = 0.2;
%! x = 0:.5:5;
%! noise = 1e-5 * sin (100*x);
%! y = exp (-a0*x) + b0 + noise;
%! c_opt = [a0, b0];
%! tol = 1e-5;
%!
%! [c, fval, info, output] = fsolve (@(c) (exp(-c(1)*x) + c(2) - y), [0, 0]);
%! assert (info > 0);
%! assert (norm (c - c_opt, Inf) < tol);
%! assert (norm (fval) < norm (noise));
%!function y = cfcn (x)
%! y(1) = (1+i)*x(1)^2 - (1-i)*x(2) - 2;
%! y(2) = sqrt (x(1)*x(2)) - (1-2i)*x(3) + (3-4i);
%! y(3) = x(1) * x(2) - x(3)^2 + (3+2i);
%!endfunction
%!test
%! x_opt = [-1+i, 1-i, 2+i];
%! x = [i, 1, 1+i];
%!
%! [x, f, info] = fsolve (@cfcn, x, optimset ("ComplexEqn", "on"));
%! tol = 1e-5;
%! assert (norm (f) < tol);
%! assert (norm (x - x_opt, Inf) < tol);
%!test <*53991>
%! A = @(lam) [0 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 -lam^2 0];
%! C = [1 0 0 0; 0 0 1 0];
%! B = @(lam) [C*expm(A(lam)*0); C*expm(A(lam)*1)];
%! detB = @(lam) det (B(lam));
%!
%! [x, fval, info] = fsolve (detB, 0);
%! assert (x == 0);
%! assert (fval == -1);
%! assert (info == -2);
%!test <*53991>
%! [x, fval, info] = fsolve (@(x) 5*x, 0);
%! assert (x == 0);
%! assert (fval == 0);
%! assert (info == 1);
|