1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} fzero (@var{fcn}, @var{x0})
## @deftypefnx {} {@var{x} =} fzero (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}] =} fzero (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}] =} fzero (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{})
## Find a zero of a univariate function.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## @var{x0} should be a two-element vector specifying two points which
## bracket a zero. In other words, there must be a change in sign of the
## function between @var{x0}(1) and @var{x0}(2). More mathematically, the
## following must hold
##
## @example
## sign (@var{fcn}(@var{x0}(1))) * sign (@var{fcn}(@var{x0}(2))) <= 0
## @end example
##
## If @var{x0} is a single scalar then several nearby and distant values are
## probed in an attempt to obtain a valid bracketing. If this is not
## successful, the function fails.
##
## @var{options} is a structure specifying additional options. Currently,
## @code{fzero} recognizes these options:
## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, and @qcode{"TolX"}.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before the search is halted. The default value is @code{Inf}.
## The value must be a positive integer.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before the search is halted. The default value is @code{Inf}.
## The value must be a positive integer.
##
## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}.
## The default value is @code{eps}.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.
## To initialize an options structure with default values for @code{fzero} use
## @code{options = optimset ("fzero")}.
##
## On exit, the function returns @var{x}, the approximate zero point, and
## @var{fval}, the function evaluated at @var{x}.
##
## The third output @var{info} reports whether the algorithm succeeded and
## may take one of the following values:
##
## @itemize
## @item 1
## The algorithm converged to a solution.
##
## @item 0
## Maximum number of iterations or function evaluations has been reached.
##
## @item -1
## The algorithm has been terminated by a user @code{OutputFcn}.
##
## @item -5
## The algorithm may have converged to a singular point.
## @end itemize
##
## @var{output} is a structure containing runtime information about the
## @code{fzero} algorithm. Fields in the structure are:
##
## @itemize
## @item iterations
## Number of iterations through loop.
##
## @item @nospell{funcCount}
## Number of function evaluations.
##
## @item algorithm
## The string @qcode{"bisection, interpolation"}.
##
## @item bracketx
## A two-element vector with the final bracketing of the zero along the
## x-axis.
##
## @item brackety
## A two-element vector with the final bracketing of the zero along the
## y-axis.
## @end itemize
## @seealso{optimset, fsolve}
## @end deftypefn
## This is essentially the @nospell{ACM} algorithm 748: Enclosing Zeros of
## Continuous Functions due to Alefeld, Potra and Shi, @nospell{ACM}
## Transactions on Mathematical Software, Vol. 21, No. 3, September 1995.
## Although the workflow should be the same, the structure of the algorithm has
## been transformed non-trivially; instead of the authors' approach of
## sequentially calling building blocks subprograms we implement here a
## FSM version using one interior point determination and one bracketing
## per iteration, thus reducing the number of temporary variables and
## simplifying the algorithm structure. Further, this approach reduces
## the need for external functions and error handling. The algorithm has
## also been slightly modified.
## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fzero");
function [x, fval, info, output] = fzero (fcn, x0, options = struct ())
## Get default options if requested.
if (nargin == 1 && ischar (fcn) && strcmp (fcn, "defaults"))
x = struct ("Display", "notify", "FunValCheck", "off",
"MaxFunEvals", Inf, "MaxIter", Inf,
"OutputFcn", [], "TolX", eps);
return;
endif
if (nargin < 2)
print_usage ();
endif
if (ischar (fcn))
fcn = str2func (fcn);
endif
displev = optimget (options, "Display", "notify");
switch (displev)
case "iter"
displev = 1;
case "final"
displev = 2;
case "notify"
displev = 3;
otherwise # "none"
displev = 0;
endswitch
funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
maxfev = optimget (options, "MaxFunEvals", Inf);
maxiter = optimget (options, "MaxIter", Inf);
outfcn = optimget (options, "OutputFcn");
tolx = optimget (options, "TolX", eps);
mu = 0.5;
if (funvalchk)
## Replace fcn with a guarded version.
fcn = @(x) guarded_eval (fcn, x);
endif
info = 0; # The default exit flag if number of iterations exceeded.
niter = 0;
nfev = 0;
x = fval = a = fa = b = fb = NaN;
## Prepare...
a = x0(1);
fa = fcn (a);
nfev = 1;
if (length (x0) > 1)
b = x0(2);
fb = fcn (b);
nfev += 1;
else
## Try to find a value for b which brackets a zero-crossing
if (displev == 1)
printf ( ...
"\nSearch for an interval around %g containing a sign change:\n", a);
printf (" Fcn-count a f(a) b ");
printf ("f(b) Procedure\n");
fmt_str = " %4d %13.6g %13.6g %13.6g %13.6g %s\n";
endif
## For very small values, switch to absolute rather than relative search
if (abs (a) < .001)
aa = ifelse (a == 0, 0.1, sign (a) * 0.1);
else
aa = a;
endif
if (displev == 1)
printf (fmt_str, nfev, a, fa, a, fa, "initial interval");
endif
## Search in an ever-widening range around the initial point.
for srch = [-.01 +.025 -.05 +.10 -.25 +.50 -1 +2.5 -5 +10 -50 +100 -500 +1000]
b = aa + aa*srch;
fb = fcn (b);
nfev += 1;
if (displev == 1)
printf (fmt_str, nfev, a, fa, b, fb, "search");
endif
if (sign (fa) * sign (fb) <= 0)
break;
endif
endfor
endif
if (b < a)
u = a;
a = b;
b = u;
fu = fa;
fa = fb;
fb = fu;
endif
if (! (sign (fa) * sign (fb) <= 0))
error ("Octave:fzero:bracket", "fzero: not a valid initial bracketing");
endif
if (displev == 1)
printf ("\nSearch for a zero in the interval [%g, %g]:\n", a, b);
disp (" Fcn-count x f(x) Procedure");
fmt_str = " %4d %13.6g %13.6g %s\n";
endif
slope0 = (fb - fa) / (b - a);
if (fa == 0)
b = a;
fb = fa;
elseif (fb == 0)
a = b;
fa = fb;
endif
itype = 1;
if (abs (fa) < abs (fb))
u = a; fu = fa;
else
u = b; fu = fb;
endif
if (displev == 1)
printf (fmt_str, nfev, u, fu, "initial");
endif
if (isa (x0, "single") || isa (fa, "single"))
macheps = eps ("single");
else
macheps = eps ("double");
endif
d = e = u;
fd = fe = fu;
mba = mu*(b - a);
while (niter < maxiter && nfev < maxfev)
switch (itype)
case 1
## The initial test.
if (b - a <= 2*(2 * abs (u) * macheps + tolx))
x = u; fval = fu;
info = 1;
break;
endif
if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa))
## Secant step.
c = u - (a - b) / (fa - fb) * fu;
else
## Bisection step.
c = 0.5*(a + b);
endif
d = u; fd = fu;
itype = 5;
case {2, 3}
l = length (unique ([fa, fb, fd, fe]));
if (l == 4)
## Inverse cubic interpolation.
q11 = (d - e) * fd / (fe - fd);
q21 = (b - d) * fb / (fd - fb);
q31 = (a - b) * fa / (fb - fa);
d21 = (b - d) * fd / (fd - fb);
d31 = (a - b) * fb / (fb - fa);
q22 = (d21 - q11) * fb / (fe - fb);
q32 = (d31 - q21) * fa / (fd - fa);
d32 = (d31 - q21) * fd / (fd - fa);
q33 = (d32 - q22) * fa / (fe - fa);
c = a + q31 + q32 + q33;
endif
if (l < 4 || sign (c - a) * sign (c - b) > 0)
## Quadratic interpolation + Newton.
a0 = fa;
a1 = (fb - fa)/(b - a);
a2 = ((fd - fb)/(d - b) - a1) / (d - a);
## Modification 1: this is simpler and does not seem to be worse.
c = a - a0/a1;
if (a2 != 0)
c = a - a0/a1;
for i = 1:itype
pc = a0 + (a1 + a2*(c - b))*(c - a);
pdc = a1 + a2*(2*c - a - b);
if (pdc == 0)
c = a - a0/a1;
break;
endif
c -= pc/pdc;
endfor
endif
endif
itype += 1;
case 4
## Double secant step.
c = u - 2*(b - a)/(fb - fa)*fu;
## Bisect if too far.
if (abs (c - u) > 0.5*(b - a))
c = 0.5 * (b + a);
endif
itype = 5;
case 5
## Bisection step.
c = 0.5 * (b + a);
itype = 2;
endswitch
## Don't let c come too close to a or b.
delta = 2*0.7*(2 * abs (u) * macheps + tolx);
if ((b - a) <= 2*delta)
c = (a + b)/2;
else
c = max (a + delta, min (b - delta, c));
endif
## Calculate new point.
x = c;
fval = fc = fcn (c);
niter += 1; nfev += 1;
if (displev == 1)
printf (fmt_str, nfev, x, fc, "interpolation");
endif
## Modification 2: skip inverse cubic interpolation if
## nonmonotonicity is detected.
if (sign (fc - fa) * sign (fc - fb) >= 0)
## The new point broke monotonicity.
## Disable inverse cubic.
fe = fc;
else
e = d; fe = fd;
endif
## Bracketing.
if (sign (fa) * sign (fc) < 0)
d = b; fd = fb;
b = c; fb = fc;
elseif (sign (fb) * sign (fc) < 0)
d = a; fd = fa;
a = c; fa = fc;
elseif (fc == 0)
a = b = c; fa = fb = fc;
info = 1;
break;
else
## This should never happen.
error ("Octave:fzero:bracket", "fzero: zero point is not bracketed");
endif
## If there's an output function, use it now.
if (! isempty (outfcn))
optv.funccount = nfev;
optv.fval = fval;
optv.iteration = niter;
if (outfcn (x, optv, "iter"))
info = -1;
break;
endif
endif
if (abs (fa) < abs (fb))
u = a; fu = fa;
else
u = b; fu = fb;
endif
if (b - a <= 2*(2 * abs (u) * macheps + tolx))
info = 1;
break;
endif
## Skip bisection step if successful reduction.
if (itype == 5 && (b - a) <= mba)
itype = 2;
endif
if (itype == 2)
mba = mu * (b - a);
endif
endwhile
## Check solution for a singularity by examining slope
if (info == 1)
if ((b - a) != 0
&& abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(macheps+tolx)))
info = -5;
endif
endif
if (displev != 0)
switch (info)
case 1
if (displev != 3)
disp ("\nAlgorithm converged.\n");
endif
case -1
disp ("\nAlgorithm has been terminated by user.\n");
case -5
disp ("\nAlgorithm seemingly converged to a singular point.\n");
otherwise
disp ( ...
"\nMaximum number of iterations or function evaluations reached.\n");
endswitch
endif
output.iterations = niter;
output.funcCount = nfev;
output.algorithm = "bisection, interpolation";
output.bracketx = [a, b];
output.brackety = [fa, fb];
endfunction
## A helper function that evaluates a function and checks for bad results.
function fx = guarded_eval (fcn, x)
fx = fcn (x);
fx = fx(1);
if (! isreal (fx))
error ("Octave:fzero:notreal", "fzero: non-real value encountered");
elseif (isnan (fx))
error ("Octave:fzero:isnan", "fzero: NaN value encountered");
endif
endfunction
%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert (fzero (@cos, [0, 3], opt0), pi/2, 10*eps)
%!assert (fzero (@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)
%!assert <*54445> (fzero (@ (x) x, 0), 0)
%!assert <*54445> (fzero (@ (x) x + 1, 0), -1)
|