File: fzero.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (461 lines) | stat: -rw-r--r-- 13,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} fzero (@var{fcn}, @var{x0})
## @deftypefnx {} {@var{x} =} fzero (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}] =} fzero (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}] =} fzero (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{})
## Find a zero of a univariate function.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## @var{x0} should be a two-element vector specifying two points which
## bracket a zero.  In other words, there must be a change in sign of the
## function between @var{x0}(1) and @var{x0}(2).  More mathematically, the
## following must hold
##
## @example
## sign (@var{fcn}(@var{x0}(1))) * sign (@var{fcn}(@var{x0}(2))) <= 0
## @end example
##
## If @var{x0} is a single scalar then several nearby and distant values are
## probed in an attempt to obtain a valid bracketing.  If this is not
## successful, the function fails.
##
## @var{options} is a structure specifying additional options.  Currently,
## @code{fzero} recognizes these options:
## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, and @qcode{"TolX"}.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before the search is halted.  The default value is @code{Inf}.
## The value must be a positive integer.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before the search is halted.  The default value is @code{Inf}.
## The value must be a positive integer.
##
## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}.
## The default value is @code{eps}.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.
## To initialize an options structure with default values for @code{fzero} use
## @code{options = optimset ("fzero")}.
##
## On exit, the function returns @var{x}, the approximate zero point, and
## @var{fval}, the function evaluated at @var{x}.
##
## The third output @var{info} reports whether the algorithm succeeded and
## may take one of the following values:
##
## @itemize
## @item 1
##  The algorithm converged to a solution.
##
## @item 0
##  Maximum number of iterations or function evaluations has been reached.
##
## @item -1
## The algorithm has been terminated by a user @code{OutputFcn}.
##
## @item -5
## The algorithm may have converged to a singular point.
## @end itemize
##
## @var{output} is a structure containing runtime information about the
## @code{fzero} algorithm.  Fields in the structure are:
##
## @itemize
## @item iterations
##  Number of iterations through loop.
##
## @item @nospell{funcCount}
##  Number of function evaluations.
##
## @item algorithm
##  The string @qcode{"bisection, interpolation"}.
##
## @item bracketx
##  A two-element vector with the final bracketing of the zero along the
## x-axis.
##
## @item brackety
##  A two-element vector with the final bracketing of the zero along the
## y-axis.
## @end itemize
## @seealso{optimset, fsolve}
## @end deftypefn

## This is essentially the @nospell{ACM} algorithm 748: Enclosing Zeros of
## Continuous Functions due to Alefeld, Potra and Shi, @nospell{ACM}
## Transactions on Mathematical Software, Vol. 21, No. 3, September 1995.
## Although the workflow should be the same, the structure of the algorithm has
## been transformed non-trivially; instead of the authors' approach of
## sequentially calling building blocks subprograms we implement here a
## FSM version using one interior point determination and one bracketing
## per iteration, thus reducing the number of temporary variables and
## simplifying the algorithm structure.  Further, this approach reduces
## the need for external functions and error handling.  The algorithm has
## also been slightly modified.

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fzero");

function [x, fval, info, output] = fzero (fcn, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fcn) && strcmp (fcn, "defaults"))
    x = struct ("Display", "notify", "FunValCheck", "off",
                "MaxFunEvals", Inf, "MaxIter", Inf,
                "OutputFcn", [], "TolX", eps);
    return;
  endif

  if (nargin < 2)
    print_usage ();
  endif

  if (ischar (fcn))
    fcn = str2func (fcn);
  endif

  displev = optimget (options, "Display", "notify");
  switch (displev)
    case "iter"
      displev = 1;
    case "final"
      displev = 2;
    case "notify"
      displev = 3;
    otherwise  # "none"
      displev = 0;
  endswitch

  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
  maxfev = optimget (options, "MaxFunEvals", Inf);
  maxiter = optimget (options, "MaxIter", Inf);
  outfcn = optimget (options, "OutputFcn");
  tolx = optimget (options, "TolX", eps);

  mu = 0.5;

  if (funvalchk)
    ## Replace fcn with a guarded version.
    fcn = @(x) guarded_eval (fcn, x);
  endif

  info = 0;  # The default exit flag if number of iterations exceeded.
  niter = 0;
  nfev = 0;

  x = fval = a = fa = b = fb = NaN;

  ## Prepare...
  a = x0(1);
  fa = fcn (a);
  nfev = 1;
  if (length (x0) > 1)
    b = x0(2);
    fb = fcn (b);
    nfev += 1;
  else
    ## Try to find a value for b which brackets a zero-crossing
    if (displev == 1)
      printf ( ...
        "\nSearch for an interval around %g containing a sign change:\n", a);
      printf (" Fcn-count    a          f(a)             b          ");
      printf ("f(b)        Procedure\n");
      fmt_str = " %4d  %13.6g %13.6g %13.6g %13.6g   %s\n";
    endif

    ## For very small values, switch to absolute rather than relative search
    if (abs (a) < .001)
      aa = ifelse (a == 0, 0.1, sign (a) * 0.1);
    else
      aa = a;
    endif
    if (displev == 1)
      printf (fmt_str, nfev, a, fa, a, fa, "initial interval");
    endif
    ## Search in an ever-widening range around the initial point.
    for srch = [-.01 +.025 -.05 +.10 -.25 +.50 -1 +2.5 -5 +10 -50 +100 -500 +1000]
      b = aa + aa*srch;
      fb = fcn (b);
      nfev += 1;
      if (displev == 1)
        printf (fmt_str, nfev, a, fa, b, fb, "search");
      endif
      if (sign (fa) * sign (fb) <= 0)
        break;
      endif
    endfor
  endif

  if (b < a)
    u = a;
    a = b;
    b = u;

    fu = fa;
    fa = fb;
    fb = fu;
  endif

  if (! (sign (fa) * sign (fb) <= 0))
    error ("Octave:fzero:bracket", "fzero: not a valid initial bracketing");
  endif

  if (displev == 1)
    printf ("\nSearch for a zero in the interval [%g, %g]:\n", a, b);
    disp (" Fcn-count    x          f(x)             Procedure");
    fmt_str = " %4d  %13.6g %13.6g        %s\n";
  endif

  slope0 = (fb - fa) / (b - a);

  if (fa == 0)
    b = a;
    fb = fa;
  elseif (fb == 0)
    a = b;
    fa = fb;
  endif

  itype = 1;

  if (abs (fa) < abs (fb))
    u = a; fu = fa;
  else
    u = b; fu = fb;
  endif
  if (displev == 1)
    printf (fmt_str, nfev, u, fu, "initial");
  endif

  if (isa (x0, "single") || isa (fa, "single"))
    macheps = eps ("single");
  else
    macheps = eps ("double");
  endif

  d = e = u;
  fd = fe = fu;
  mba = mu*(b - a);
  while (niter < maxiter && nfev < maxfev)
    switch (itype)
      case 1
        ## The initial test.
        if (b - a <= 2*(2 * abs (u) * macheps + tolx))
          x = u; fval = fu;
          info = 1;
          break;
        endif
        if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa))
          ## Secant step.
          c = u - (a - b) / (fa - fb) * fu;
        else
          ## Bisection step.
          c = 0.5*(a + b);
        endif
        d = u; fd = fu;
        itype = 5;
      case {2, 3}
        l = length (unique ([fa, fb, fd, fe]));
        if (l == 4)
          ## Inverse cubic interpolation.
          q11 = (d - e) * fd / (fe - fd);
          q21 = (b - d) * fb / (fd - fb);
          q31 = (a - b) * fa / (fb - fa);
          d21 = (b - d) * fd / (fd - fb);
          d31 = (a - b) * fb / (fb - fa);
          q22 = (d21 - q11) * fb / (fe - fb);
          q32 = (d31 - q21) * fa / (fd - fa);
          d32 = (d31 - q21) * fd / (fd - fa);
          q33 = (d32 - q22) * fa / (fe - fa);
          c = a + q31 + q32 + q33;
        endif
        if (l < 4 || sign (c - a) * sign (c - b) > 0)
          ## Quadratic interpolation + Newton.
          a0 = fa;
          a1 = (fb - fa)/(b - a);
          a2 = ((fd - fb)/(d - b) - a1) / (d - a);
          ## Modification 1: this is simpler and does not seem to be worse.
          c = a - a0/a1;
          if (a2 != 0)
            c = a - a0/a1;
            for i = 1:itype
              pc = a0 + (a1 + a2*(c - b))*(c - a);
              pdc = a1 + a2*(2*c - a - b);
              if (pdc == 0)
                c = a - a0/a1;
                break;
              endif
              c -= pc/pdc;
            endfor
          endif
        endif
        itype += 1;
      case 4
        ## Double secant step.
        c = u - 2*(b - a)/(fb - fa)*fu;
        ## Bisect if too far.
        if (abs (c - u) > 0.5*(b - a))
          c = 0.5 * (b + a);
        endif
        itype = 5;
      case 5
        ## Bisection step.
        c = 0.5 * (b + a);
        itype = 2;
    endswitch

    ## Don't let c come too close to a or b.
    delta = 2*0.7*(2 * abs (u) * macheps + tolx);
    if ((b - a) <= 2*delta)
      c = (a + b)/2;
    else
      c = max (a + delta, min (b - delta, c));
    endif

    ## Calculate new point.
    x = c;
    fval = fc = fcn (c);
    niter += 1; nfev += 1;
    if (displev == 1)
      printf (fmt_str, nfev, x, fc, "interpolation");
    endif

    ## Modification 2: skip inverse cubic interpolation if
    ## nonmonotonicity is detected.
    if (sign (fc - fa) * sign (fc - fb) >= 0)
      ## The new point broke monotonicity.
      ## Disable inverse cubic.
      fe = fc;
    else
      e = d; fe = fd;
    endif

    ## Bracketing.
    if (sign (fa) * sign (fc) < 0)
      d = b; fd = fb;
      b = c; fb = fc;
    elseif (sign (fb) * sign (fc) < 0)
      d = a; fd = fa;
      a = c; fa = fc;
    elseif (fc == 0)
      a = b = c; fa = fb = fc;
      info = 1;
      break;
    else
      ## This should never happen.
      error ("Octave:fzero:bracket", "fzero: zero point is not bracketed");
    endif

    ## If there's an output function, use it now.
    if (! isempty (outfcn))
      optv.funccount = nfev;
      optv.fval = fval;
      optv.iteration = niter;
      if (outfcn (x, optv, "iter"))
        info = -1;
        break;
      endif
    endif

    if (abs (fa) < abs (fb))
      u = a; fu = fa;
    else
      u = b; fu = fb;
    endif
    if (b - a <= 2*(2 * abs (u) * macheps + tolx))
      info = 1;
      break;
    endif

    ## Skip bisection step if successful reduction.
    if (itype == 5 && (b - a) <= mba)
      itype = 2;
    endif
    if (itype == 2)
      mba = mu * (b - a);
    endif
  endwhile

  ## Check solution for a singularity by examining slope
  if (info == 1)
    if ((b - a) != 0
        && abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(macheps+tolx)))
      info = -5;
    endif
  endif

  if (displev != 0)
    switch (info)
      case 1
        if (displev != 3)
          disp ("\nAlgorithm converged.\n");
        endif
      case -1
        disp ("\nAlgorithm has been terminated by user.\n");
      case -5
        disp ("\nAlgorithm seemingly converged to a singular point.\n");
      otherwise
        disp ( ...
          "\nMaximum number of iterations or function evaluations reached.\n");
    endswitch
  endif

  output.iterations = niter;
  output.funcCount = nfev;
  output.algorithm = "bisection, interpolation";
  output.bracketx = [a, b];
  output.brackety = [fa, fb];

endfunction

## A helper function that evaluates a function and checks for bad results.
function fx = guarded_eval (fcn, x)

  fx = fcn (x);
  fx = fx(1);
  if (! isreal (fx))
    error ("Octave:fzero:notreal", "fzero: non-real value encountered");
  elseif (isnan (fx))
    error ("Octave:fzero:isnan", "fzero: NaN value encountered");
  endif

endfunction


%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert (fzero (@cos, [0, 3], opt0), pi/2, 10*eps)
%!assert (fzero (@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)
%!assert <*54445> (fzero (@ (x) x, 0), 0)
%!assert <*54445> (fzero (@ (x) x + 1, 0), -1)