1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
########################################################################
##
## Copyright (C) 2005-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{xopt}, @var{fmin}, @var{errnum}, @var{extra}] =} glpk (@var{c}, @var{A}, @var{b}, @var{lb}, @var{ub}, @var{ctype}, @var{vartype}, @var{sense}, @var{param})
## Solve a linear program using the GNU @sc{glpk} library.
##
## Given three arguments, @code{glpk} solves the following standard LP:
## @tex
## $$
## \min_x C^T x
## $$
## @end tex
## @ifnottex
##
## @example
## min C'*x
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
## Ax = b \qquad x \geq 0
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## A*x = b
## x >= 0
## @end group
## @end example
##
## @end ifnottex
## but may also solve problems of the form
## @tex
## $$
## [ \min_x | \max_x ] C^T x
## $$
## @end tex
## @ifnottex
##
## @example
## [ min | max ] C'*x
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
## Ax [ = | \leq | \geq ] b \qquad LB \leq x \leq UB
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## A*x [ "=" | "<=" | ">=" ] b
## x >= LB
## x <= UB
## @end group
## @end example
##
## @end ifnottex
##
## Input arguments:
##
## @table @var
## @item c
## A column array containing the objective function coefficients.
##
## @item A
## A matrix containing the constraints coefficients.
##
## @item b
## A column array containing the right-hand side value for each constraint in
## the constraint matrix.
##
## @item lb
## An array containing the lower bound on each of the variables. If @var{lb}
## is not supplied, the default lower bound for the variables is zero.
##
## @item ub
## An array containing the upper bound on each of the variables. If @var{ub}
## is not supplied, the default upper bound is assumed to be infinite.
##
## @item ctype
## An array of characters containing the sense of each constraint in the
## constraint matrix. Each element of the array may be one of the following
## values
##
## @table @asis
## @item @qcode{"F"}
## A free (unbounded) constraint (the constraint is ignored).
##
## @item @qcode{"U"}
## An inequality constraint with an upper bound (@code{A(i,:)*x <= b(i)}).
##
## @item @qcode{"S"}
## An equality constraint (@code{A(i,:)*x = b(i)}).
##
## @item @qcode{"L"}
## An inequality with a lower bound (@code{A(i,:)*x >= b(i)}).
##
## @item @qcode{"D"}
## An inequality constraint with both upper and lower bounds
## (@code{A(i,:)*x >= -b(i)}) @emph{and} (@code{A(i,:)*x <= b(i)}).
## @end table
##
## @item vartype
## A column array containing the types of the variables.
##
## @table @asis
## @item @qcode{"C"}
## A continuous variable.
##
## @item @qcode{"I"}
## An integer variable.
## @end table
##
## @item sense
## If @var{sense} is 1, the problem is a minimization. If @var{sense} is -1,
## the problem is a maximization. The default value is 1.
##
## @item param
## A structure containing the following parameters used to define the
## behavior of solver. Missing elements in the structure take on default
## values, so you only need to set the elements that you wish to change from
## the default.
##
## Integer parameters:
##
## @table @code
## @item msglev (default: 1)
## Level of messages output by solver routines:
##
## @table @asis
## @item 0 (@w{@code{GLP_MSG_OFF}})
## No output.
##
## @item 1 (@w{@code{GLP_MSG_ERR}})
## Error and warning messages only.
##
## @item 2 (@w{@code{GLP_MSG_ON}})
## Normal output.
##
## @item 3 (@w{@code{GLP_MSG_ALL}})
## Full output (includes informational messages).
## @end table
##
## @item scale (default: 16)
## Scaling option. The values can be combined with the bitwise OR operator and
## may be the following:
##
## @table @asis
## @item 1 (@w{@code{GLP_SF_GM}})
## Geometric mean scaling.
##
## @item 16 (@w{@code{GLP_SF_EQ}})
## Equilibration scaling.
##
## @item 32 (@w{@code{GLP_SF_2N}})
## Round scale factors to power of two.
##
## @item 64 (@w{@code{GLP_SF_SKIP}})
## Skip if problem is well scaled.
## @end table
##
## Alternatively, a value of 128 (@w{@env{GLP_SF_AUTO}}) may be also
## specified, in which case the routine chooses the scaling options
## automatically.
##
## @item dual (default: 1)
## Simplex method option:
##
## @table @asis
## @item 1 (@w{@code{GLP_PRIMAL}})
## Use two-phase primal simplex.
##
## @item 2 (@w{@code{GLP_DUALP}})
## Use two-phase dual simplex, and if it fails, switch to the primal simplex.
##
## @item 3 (@w{@code{GLP_DUAL}})
## Use two-phase dual simplex.
## @end table
##
## @item price (default: 34)
## Pricing option (for both primal and dual simplex):
##
## @table @asis
## @item 17 (@w{@code{GLP_PT_STD}})
## Textbook pricing.
##
## @item 34 (@w{@code{GLP_PT_PSE}})
## Steepest edge pricing.
## @end table
##
## @item itlim (default: intmax)
## Simplex iterations limit. It is decreased by one each time when one simplex
## iteration has been performed, and reaching zero value signals the solver to
## stop the search.
##
## @item outfrq (default: 200)
## Output frequency, in iterations. This parameter specifies how frequently
## the solver sends information about the solution to the standard output.
##
## @item branch (default: 4)
## Branching technique option (for MIP only):
##
## @table @asis
## @item 1 (@w{@code{GLP_BR_FFV}})
## First fractional variable.
##
## @item 2 (@w{@code{GLP_BR_LFV}})
## Last fractional variable.
##
## @item 3 (@w{@code{GLP_BR_MFV}})
## Most fractional variable.
##
## @item 4 (@w{@code{GLP_BR_DTH}})
## Heuristic by @nospell{Driebeck and Tomlin}.
##
## @item 5 (@w{@code{GLP_BR_PCH}})
## Hybrid @nospell{pseudocost} heuristic.
## @end table
##
## @item btrack (default: 4)
## Backtracking technique option (for MIP only):
##
## @table @asis
## @item 1 (@w{@code{GLP_BT_DFS}})
## Depth first search.
##
## @item 2 (@w{@code{GLP_BT_BFS}})
## Breadth first search.
##
## @item 3 (@w{@code{GLP_BT_BLB}})
## Best local bound.
##
## @item 4 (@w{@code{GLP_BT_BPH}})
## Best projection heuristic.
## @end table
##
## @item presol (default: 1)
## If this flag is set, the simplex solver uses the built-in LP presolver.
## Otherwise the LP presolver is not used.
##
## @item lpsolver (default: 1)
## Select which solver to use. If the problem is a MIP problem this flag
## will be ignored.
##
## @table @asis
## @item 1
## Revised simplex method.
##
## @item 2
## Interior point method.
## @end table
##
## @item rtest (default: 34)
## Ratio test technique:
##
## @table @asis
## @item 17 (@w{@code{GLP_RT_STD}})
## Standard ("textbook").
##
## @item 34 (@w{@code{GLP_RT_HAR}})
## Harris' two-pass ratio test.
## @end table
##
## @item tmlim (default: intmax)
## Searching time limit, in milliseconds.
##
## @item outdly (default: 0)
## Output delay, in seconds. This parameter specifies how long the solver
## should delay sending information about the solution to the standard output.
##
## @item save (default: 0)
## If this parameter is nonzero, save a copy of the problem in @nospell{CPLEX}
## LP format to the file @file{"outpb.lp"}. There is currently no way to
## change the name of the output file.
## @end table
##
## Real parameters:
##
## @table @code
## @item tolbnd (default: 1e-7)
## Relative tolerance used to check if the current basic solution is primal
## feasible. It is not recommended that you change this parameter unless you
## have a detailed understanding of its purpose.
##
## @item toldj (default: 1e-7)
## Absolute tolerance used to check if the current basic solution is dual
## feasible. It is not recommended that you change this parameter unless you
## have a detailed understanding of its purpose.
##
## @item tolpiv (default: 1e-10)
## Relative tolerance used to choose eligible pivotal elements of the simplex
## table. It is not recommended that you change this parameter unless you have
## a detailed understanding of its purpose.
##
## @item objll (default: -DBL_MAX)
## Lower limit of the objective function. If the objective function reaches
## this limit and continues decreasing, the solver stops the search. This
## parameter is used in the dual simplex method only.
##
## @item objul (default: +DBL_MAX)
## Upper limit of the objective function. If the objective function reaches
## this limit and continues increasing, the solver stops the search. This
## parameter is used in the dual simplex only.
##
## @item tolint (default: 1e-5)
## Relative tolerance used to check if the current basic solution is integer
## feasible. It is not recommended that you change this parameter unless you
## have a detailed understanding of its purpose.
##
## @item tolobj (default: 1e-7)
## Relative tolerance used to check if the value of the objective function is
## not better than in the best known integer feasible solution. It is not
## recommended that you change this parameter unless you have a detailed
## understanding of its purpose.
## @end table
## @end table
##
## Output values:
##
## @table @var
## @item xopt
## The optimizer (the value of the decision variables at the optimum).
##
## @item fopt
## The optimum value of the objective function.
##
## @item errnum
## Error code.
##
## @table @asis
## @item 0
## No error.
##
## @item 1 (@w{@code{GLP_EBADB}})
## Invalid basis.
##
## @item 2 (@w{@code{GLP_ESING}})
## Singular matrix.
##
## @item 3 (@w{@code{GLP_ECOND}})
## Ill-conditioned matrix.
##
## @item 4 (@w{@code{GLP_EBOUND}})
## Invalid bounds.
##
## @item 5 (@w{@code{GLP_EFAIL}})
## Solver failed.
##
## @item 6 (@w{@code{GLP_EOBJLL}})
## Objective function lower limit reached.
##
## @item 7 (@w{@code{GLP_EOBJUL}})
## Objective function upper limit reached.
##
## @item 8 (@w{@code{GLP_EITLIM}})
## Iterations limit exhausted.
##
## @item 9 (@w{@code{GLP_ETMLIM}})
## Time limit exhausted.
##
## @item 10 (@w{@code{GLP_ENOPFS}})
## No primal feasible solution.
##
## @item 11 (@w{@code{GLP_ENODFS}})
## No dual feasible solution.
##
## @item 12 (@w{@code{GLP_EROOT}})
## Root LP optimum not provided.
##
## @item 13 (@w{@code{GLP_ESTOP}})
## Search terminated by application.
##
## @item 14 (@w{@code{GLP_EMIPGAP}})
## Relative MIP gap tolerance reached.
##
## @item 15 (@w{@code{GLP_ENOFEAS}})
## No primal/dual feasible solution.
##
## @item 16 (@w{@code{GLP_ENOCVG}})
## No convergence.
##
## @item 17 (@w{@code{GLP_EINSTAB}})
## Numerical instability.
##
## @item 18 (@w{@code{GLP_EDATA}})
## Invalid data.
##
## @item 19 (@w{@code{GLP_ERANGE}})
## Result out of range.
## @end table
##
## @item extra
## A data structure containing the following fields:
##
## @table @code
## @item lambda
## Dual variables.
##
## @item redcosts
## Reduced Costs.
##
## @item time
## Time (in seconds) used for solving LP/MIP problem.
##
## @item status
## Status of the optimization.
##
## @table @asis
## @item 1 (@w{@code{GLP_UNDEF}})
## Solution status is undefined.
##
## @item 2 (@w{@code{GLP_FEAS}})
## Solution is feasible.
##
## @item 3 (@w{@code{GLP_INFEAS}})
## Solution is infeasible.
##
## @item 4 (@w{@code{GLP_NOFEAS}})
## Problem has no feasible solution.
##
## @item 5 (@w{@code{GLP_OPT}})
## Solution is optimal.
##
## @item 6 (@w{@code{GLP_UNBND}})
## Problem has no unbounded solution.
## @end table
## @end table
## @end table
##
## Example:
##
## @example
## @group
## c = [10, 6, 4]';
## A = [ 1, 1, 1;
## 10, 4, 5;
## 2, 2, 6];
## b = [100, 600, 300]';
## lb = [0, 0, 0]';
## ub = [];
## ctype = "UUU";
## vartype = "CCC";
## s = -1;
##
## param.msglev = 1;
## param.itlim = 100;
##
## [xmin, fmin, status, extra] = ...
## glpk (c, A, b, lb, ub, ctype, vartype, s, param);
## @end group
## @end example
## @end deftypefn
function [xopt, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, sense, param)
## If there is no input output the version and syntax
if (nargin < 3)
print_usage ();
endif
if (! isvector (c) || iscomplex (c) || ischar (c) || any (isinf (c))
|| any (isnan (c)))
error ("glpk: C must be a real vector with finite values");
endif
nx = length (c);
## Force column vector.
c = c(:);
## 2) Matrix constraint
if (isempty (A))
error ("glpk: A cannot be an empty matrix");
endif
if (! isreal (A))
error ("glpk: A must be real valued, not %s", typeinfo (A));
endif
if (any (isinf (A(:))) || any (isnan (A(:))))
error ("glpk: The values in A must be finite");
endif
[nc, nxa] = size (A);
if (nxa != nx)
error ("glpk: A must be %d-by-%d, not %d-by-%d",
nc, nx, rows (A), columns (A));
endif
## 3) RHS
if (isempty (b))
error ("glpk: B cannot be an empty vector");
endif
if (! isreal (b) || length (b) != nc)
error ("glpk: B must be a real-valued %d-by-1 vector", nc);
endif
if (any (! isfinite (b(:))))
error ("glpk: The values in B must be finite");
endif
## 4) Vector with the lower bound of each variable
if (nargin > 3)
if (isempty (lb))
lb = zeros (nx, 1);
elseif (! isreal (lb) || all (size (lb) > 1) || length (lb) != nx
|| any (isnan (lb)))
error ("glpk: LB must be a real-valued %d-by-1 column vector", nx);
endif
else
lb = zeros (nx, 1);
endif
## 5) Vector with the upper bound of each variable
if (nargin > 4)
if (isempty (ub))
ub = Inf (nx, 1);
elseif (! isreal (ub) || all (size (ub) > 1) || length (ub) != nx
|| any (isnan (ub)))
error ("glpk: UB must be a real-valued %d-by-1 column vector", nx);
endif
else
ub = Inf (nx, 1);
endif
## 6) Sense of each constraint
if (nargin > 5)
if (isempty (ctype))
ctype = repmat ("S", nc, 1);
elseif (! ischar (ctype) || all (size (ctype) > 1) || length (ctype) != nc)
error ("glpk: CTYPE must be a char vector of length %d", nc);
elseif (! all (ctype == "F" | ctype == "U" | ctype == "S"
| ctype == "L" | ctype == "D"))
error ("glpk: CTYPE must contain only F, U, S, L, or D");
endif
else
ctype = repmat ("S", nc, 1);
endif
## 7) Vector with the type of variables
if (nargin > 6)
if (isempty (vartype))
vartype = repmat ("C", nx, 1);
elseif (! ischar (vartype) || all (size (vartype) > 1)
|| length (vartype) != nx)
error ("glpk: VARTYPE must be a char vector of length %d", nx);
elseif (! all (vartype == "C" | vartype == "I"))
error ("glpk: VARTYPE must contain only C or I");
endif
else
## As default we consider continuous vars
vartype = repmat ("C", nx, 1);
endif
## 8) Sense of optimization
if (nargin > 7)
if (isempty (sense))
sense = 1;
elseif (ischar (sense) || all (size (sense) > 1) || ! isreal (sense)
|| any (! isfinite (sense)))
error ("glpk: SENSE must be an integer value");
elseif (sense >= 0)
sense = 1;
else
sense = -1;
endif
else
sense = 1;
endif
## 9) Parameters vector
if (nargin > 8)
if (! isstruct (param))
error ("glpk: PARAM must be a structure");
endif
else
param = struct ();
endif
[xopt, fmin, errnum, extra] = ...
__glpk__ (c, A, b, lb, ub, ctype, vartype, sense, param);
endfunction
%!testif HAVE_GLPK
%! sense = -1;
%! c = [10, 6, 4]';
%! A = [1, 1, 1; 10, 4, 5; 2, 2, 6];
%! b = [100, 600, 300]';
%! ctype = ['U', 'U', 'U']';
%! lb = [0, 0, 0]';
%! ub = [];
%! vartype = ['C', 'C', 'C']';
%! param.msglev = 0;
%! param.lpsolver = 1;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%! sense, param);
%! assert (fmin, c' * xmin);
%! for i = 1:3
%! assert (A(i,:) * xmin <= b(i));
%! endfor
%!testif HAVE_GLPK
%! sense = 1;
%! c = [-1, -1]';
%! A = [-2, 5; 2, -2];
%! b = [5, 1]';
%! ctype = ['U', 'U']';
%! lb = [0, 0]';
%! ub = [];
%! vartype = ['I', 'I']';
%! param.msglev = 0;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%! sense, param);
%! assert (fmin, c' * xmin);
%! for i = 1:2
%! assert (A(i,:) * xmin <= b(i));
%! endfor
%!testif HAVE_GLPK
%! sense = 1;
%! c = [-1, -1]';
%! A = [1, 0; 0, 1];
%! b = [1, 1]';
%! ctype = ['D', 'D']';
%! lb = [-1, -1]';
%! ub = [];
%! vartype = ['I', 'I']';
%! param.msglev = 0;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%! sense, param);
%! assert (fmin, c' * xmin);
%! for i = 1:2
%! assert (A(i,:) * xmin <= b(i));
%! endfor
%!testif HAVE_GLPK
%! sense = 1;
%! c = [0, 0, 0, -1, -1]';
%! A = [-2, 0, 0, 1, 0; 0, 1, 0, 0, 2; 0, 0, 1, 3, 2];
%! b = [4, 12, 18]';
%! ctype = ['S', 'S', 'S']';
%! lb = [0, 0, 0, 0, 0]';
%! ub = [];
%! vartype = ['C', 'C', 'C', 'C', 'C']';
%! param.msglev = 0;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%! sense, param);
%! assert (fmin, c' * xmin);
%! assert (A * xmin, b);
%!error <C .* finite values> glpk (NaN, 2, 3)
%!error <A must be finite> glpk (1, NaN, 3)
%!error <B must be finite> glpk (1, 2, NaN)
%!error <LB must be a real-valued> glpk (1, 2, 3, NaN)
%!error <UB must be a real-valued> glpk (1, 2, 3, 4, NaN)
%!error <SENSE must be .* integer> glpk (1, 2, 3, 4, 5, "F", "C", NaN)
|