1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H})
## @deftypefnx {} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q})
## @deftypefnx {} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b})
## @deftypefnx {} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b}, @var{lb}, @var{ub})
## @deftypefnx {} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b}, @var{lb}, @var{ub}, @var{A_lb}, @var{A_in}, @var{A_ub})
## @deftypefnx {} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@dots{}, @var{options})
## Solve a quadratic program (QP).
##
## Solve the quadratic program defined by
## @tex
## $$
## \min_x {1 \over 2} x^T H x + x^T q
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## min 0.5 x'*H*x + x'*q
## x
## @end group
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
## A x = b \qquad lb \leq x \leq ub \qquad A_{lb} \leq A_{in} x \leq A_{ub}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## A*x = b
## lb <= x <= ub
## A_lb <= A_in*x <= A_ub
## @end group
## @end example
##
## @end ifnottex
## @noindent
## using a null-space active-set method.
##
## Any bound (@var{A}, @var{b}, @var{lb}, @var{ub}, @var{A_in}, @var{A_lb},
## @var{A_ub}) may be set to the empty matrix (@code{[]}) if not present. The
## constraints @var{A} and @var{A_in} are matrices with each row representing
## a single constraint. The other bounds are scalars or vectors depending on
## the number of constraints. The algorithm is faster if the initial guess is
## feasible.
##
## @var{options} is a structure specifying additional parameters which
## control the algorithm. Currently, @code{qp} recognizes these options:
## @qcode{"MaxIter"}, @qcode{"TolX"}.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before optimization is halted. The default value is 200.
## The value must be a positive integer.
##
## @qcode{"TolX"} specifies the termination tolerance for the unknown variables
## @var{x}. The default is @code{sqrt (eps)} or approximately 1e-8.
##
## On return, @var{x} is the location of the minimum and @var{fval} contains
## the value of the objective function at @var{x}.
##
## @table @var
## @item info
## Structure containing run-time information about the algorithm. The
## following fields are defined:
##
## @table @code
## @item solveiter
## The number of iterations required to find the solution.
##
## @item info
## An integer indicating the status of the solution.
##
## @table @asis
## @item 0
## The problem is feasible and convex. Global solution found.
##
## @item 1
## The problem is not convex. Local solution found.
##
## @item 2
## The problem is not convex and unbounded.
##
## @item 3
## Maximum number of iterations reached.
##
## @item 6
## The problem is infeasible.
## @end table
## @end table
## @end table
## @seealso{sqp}
## @end deftypefn
## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("qp");
function [x, obj, INFO, lambda] = qp (x0, H, varargin)
if (nargin == 1 && ischar (x0) && strcmp (x0, "defaults"))
x = struct ("MaxIter", 200, "TolX", sqrt (eps));
return;
endif
nargs = nargin;
if (nargs > 2 && isstruct (varargin{end}))
options = varargin{end};
nargs -= 1;
else
options = struct ();
endif
if (nargs != 2 && nargs != 3 && nargs != 5 && nargs != 7 && nargs != 10)
print_usage ();
endif
if (nargs >= 3)
q = varargin{1};
else
q = [];
endif
if (nargs >= 5)
A = varargin{2};
b = varargin{3};
else
A = [];
b = [];
endif
if (nargs >= 7)
lb = varargin{4};
ub = varargin{5};
else
lb = [];
ub = [];
endif
if (nargs == 10)
A_lb = varargin{6};
A_in = varargin{7};
A_ub = varargin{8};
else
A_lb = [];
A_in = [];
A_ub = [];
endif
maxit = optimget (options, "MaxIter", 200);
tol = optimget (options, "TolX", sqrt (eps));
## Validate the quadratic penalty.
if (! issquare (H))
error ("qp: quadratic penalty matrix must be square");
elseif (! ishermitian (H))
## warning ("qp: quadratic penalty matrix not hermitian");
H = (H + H')/2;
endif
n = rows (H);
## Validate the initial guess.
## If empty it is resized to the right dimension and filled with 0.
if (isempty (x0))
x0 = zeros (n, 1);
else
if (! isvector (x0))
error ("qp: the initial guess X0 must be a vector");
elseif (numel (x0) != n)
error ("qp: the initial guess X0 has incorrect length");
endif
x0 = x0(:); # always use column vector.
endif
## Validate linear penalty.
if (isempty (q))
q = zeros (n, 1);
else
if (! isvector (q))
error ("qp: Q must be a vector");
elseif (numel (q) != n)
error ("qp: Q has incorrect length");
endif
q = q(:); # always use column vector.
endif
## Validate equality constraint matrices.
if (isempty (A) || isempty (b))
A = zeros (0, n);
b = zeros (0, 1);
n_eq = 0;
else
[n_eq, n1] = size (A);
if (n1 != n)
error ("qp: equality constraint matrix has incorrect column dimension");
endif
if (numel (b) != n_eq)
error ("qp: equality constraint matrix and vector have inconsistent dimensions");
endif
endif
## Validate bound constraints.
Ain = zeros (0, n);
bin = zeros (0, 1);
n_in = 0;
if (nargs > 5)
if (! isempty (lb))
if (numel (lb) != n)
error ("qp: lower bound LB has incorrect length");
elseif (isempty (ub))
Ain = [Ain; eye(n)];
bin = [bin; lb];
endif
endif
if (! isempty (ub))
if (numel (ub) != n)
error ("qp: upper bound UB has incorrect length");
elseif (isempty (lb))
Ain = [Ain; -eye(n)];
bin = [bin; -ub];
endif
endif
if (! isempty (lb) && ! isempty (ub))
rtol = tol;
for i = 1:n
if (abs (lb (i) - ub(i)) < rtol*(1 + max (abs (lb(i) + ub(i)))))
## These are actually an equality constraint
tmprow = zeros (1,n);
tmprow(i) = 1;
A = [A;tmprow];
b = [b; 0.5*(lb(i) + ub(i))];
n_eq += 1;
else
tmprow = zeros (1,n);
tmprow(i) = 1;
Ain = [Ain; tmprow; -tmprow];
bin = [bin; lb(i); -ub(i)];
n_in += 2;
endif
endfor
endif
endif
## Validate inequality constraints.
if (nargs > 7 && isempty (A_in) && ! (isempty (A_lb) || isempty (A_ub)))
warning ("qp: empty inequality constraint matrix but non-empty bound vectors");
endif
if (nargs > 7 && ! isempty (A_in))
[dimA_in, n1] = size (A_in);
if (n1 != n)
error ("qp: inequality constraint matrix has incorrect column dimension, expected %i", n1);
else
if (! isempty (A_lb))
if (numel (A_lb) != dimA_in)
error ("qp: inequality constraint matrix and lower bound vector are inconsistent, %i != %i", dimA_in, numel (A_lb));
elseif (isempty (A_ub))
Ain = [Ain; A_in];
bin = [bin; A_lb];
endif
endif
if (! isempty (A_ub))
if (numel (A_ub) != dimA_in)
error ("qp: inequality constraint matrix and upper bound vector are inconsistent, %i != %i", dimA_in, numel (A_ub));
elseif (isempty (A_lb))
Ain = [Ain; -A_in];
bin = [bin; -A_ub];
endif
endif
if (! isempty (A_lb) && ! isempty (A_ub))
rtol = tol;
for i = 1:dimA_in
if (abs (A_lb(i) - A_ub(i))
< rtol*(1 + max (abs (A_lb(i) + A_ub(i)))))
## These are actually an equality constraint
tmprow = A_in(i,:);
A = [A;tmprow];
b = [b; 0.5*(A_lb(i) + A_ub(i))];
n_eq += 1;
else
tmprow = A_in(i,:);
Ain = [Ain; tmprow; -tmprow];
bin = [bin; A_lb(i); -A_ub(i)];
n_in += 2;
endif
endfor
endif
endif
endif
## Now we should have the following QP:
##
## min_x 0.5*x'*H*x + x'*q
## s.t. A*x = b
## Ain*x >= bin
## Discard inequality constraints that have -Inf bounds since those
## will never be active.
idx = (bin == -Inf);
bin(idx) = [];
Ain(idx,:) = [];
n_in = numel (bin);
## Check if the initial guess is feasible.
if (isa (x0, "single") || isa (H, "single") || isa (q, "single")
|| isa (A, "single") || isa (b, "single"))
rtol = sqrt (eps ("single"));
else
rtol = tol;
endif
eq_infeasible = (n_eq > 0 && norm (A*x0-b) > rtol*(1+abs (b)));
in_infeasible = (n_in > 0 && any (Ain*x0-bin < -rtol*(1+abs (bin))));
info = 0;
if (isdefinite (H) != 1)
info = 2;
endif
if (info == 0 && (eq_infeasible || in_infeasible))
## The initial guess is not feasible.
## First, define an xbar that is feasible with respect to the
## equality constraints.
if (eq_infeasible)
if (rank (A) < n_eq)
error ("qp: equality constraint matrix must be full row rank");
endif
xbar = pinv (A) * b;
else
xbar = x0;
endif
## Second, check that xbar is also feasible with respect to the
## inequality constraints.
if (n_in > 0)
res = Ain * xbar - bin;
if (any (res < -rtol * (1 + abs (bin))))
## xbar is not feasible with respect to the inequality constraints.
## Compute a step in the null space of the equality constraints,
## by solving a QP. If the slack is small, we have a feasible initial
## guess. Otherwise, the problem is infeasible.
if (n_eq > 0)
Z = null (A);
if (isempty (Z))
## The problem is infeasible because A is square and full rank,
## but xbar is not feasible.
info = 6;
endif
endif
if (info != 6)
## Solve an LP with additional slack variables
## to find a feasible starting point.
gamma = eye (n_in);
if (n_eq > 0)
Atmp = [Ain*Z, gamma];
btmp = -res;
else
Atmp = [Ain, gamma];
btmp = bin;
endif
ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)];
lb = [-Inf(n-n_eq,1); zeros(n_in,1)];
ub = [];
ctype = repmat ("L", n_in, 1);
[P, FMIN, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype);
## FIXME: Test based only on rtol occasionally fails (Bug #38353).
## This seems to be a problem in glpk in which return value XOPT(1)
## is the same as FMIN. Workaround this by explicit test
if (status != 0)
info = 6; # The problem is infeasible
else
if (all (abs (P(n-n_eq+2:end)) < rtol * (1 + norm (btmp)))
&& (P(n-n_eq+1) < rtol * (1 + norm (btmp))
|| P(n-n_eq+1) == FMIN))
## We found a feasible starting point
if (n_eq > 0)
x0 = xbar + Z*P(1:n-n_eq);
else
x0 = P(1:n);
endif
else
info = 6; # The problem is infeasible
endif
endif
endif
else
## xbar is feasible. We use it a starting point.
x0 = xbar;
endif
else
## xbar is feasible. We use it a starting point.
x0 = xbar;
endif
endif
if (info == 0)
## The initial (or computed) guess is feasible. Call the solver.
[x, lambda, info, iter] = __qp__ (x0, H, q, A, b, Ain, bin, maxit, rtol);
else
iter = 0;
x = x0;
lambda = [];
endif
if (nargout > 1)
obj = 0.5 * x' * H * x + q' * x;
endif
if (nargout > 2)
INFO.solveiter = iter;
INFO.info = info;
endif
endfunction
## Test infeasible initial guess
%!testif HAVE_GLPK <*40536>
%!
%! H = 1; q = 0; # objective: x -> 0.5 x^2
%! A = 1; lb = 1; ub = +inf; # constraint: x >= 1
%! x0 = 0; # infeasible initial guess
%!
%! [x, obj_qp, INFO, lambda] = qp (x0, H, q, [], [], [], [], lb, A, ub);
%!
%! assert (isstruct (INFO) && isfield (INFO, "info") && (INFO.info == 0));
%! assert ([x obj_qp], [1.0 0.5], eps);
%!test <*61762>
%! [x, obj, info] = qp ([], [21, 30, 39; 30, 45, 60; 39, 60, 81], [-40; -65; -90]);
%! assert (x, zeros (3, 1));
%! assert (obj, 0);
%! assert (info.info, 2);
|