1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
########################################################################
##
## Copyright (C) 2005-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{x}, @var{obj}, @var{info}, @var{iter}, @var{nf}, @var{lambda}] =} sqp (@var{x0}, @var{phi})
## @deftypefnx {} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g})
## @deftypefnx {} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h})
## @deftypefnx {} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub})
## @deftypefnx {} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter})
## @deftypefnx {} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter}, @var{tolerance})
## Minimize an objective function using sequential quadratic programming (SQP).
##
## Solve the nonlinear program
## @tex
## $$
## \min_x \phi (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## min phi (x)
## x
## @end group
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
## g(x) = 0 \qquad h(x) \geq 0 \qquad lb \leq x \leq ub
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## g(x) = 0
## h(x) >= 0
## lb <= x <= ub
## @end group
## @end example
##
## @end ifnottex
## @noindent
## using a sequential quadratic programming method.
##
## The first argument is the initial guess for the vector @var{x0}.
##
## The second argument is a function handle pointing to the objective function
## @var{phi}. The objective function must accept one vector argument and
## return a scalar.
##
## The second argument may also be a 2- or 3-element cell array of function
## handles. The first element should point to the objective function, the
## second should point to a function that computes the gradient of the
## objective function, and the third should point to a function that computes
## the Hessian of the objective function. If the gradient function is not
## supplied, the gradient is computed by finite differences. If the Hessian
## function is not supplied, a BFGS update formula is used to approximate the
## Hessian.
##
## When supplied, the gradient function @code{@var{phi}@{2@}} must accept one
## vector argument and return a vector. When supplied, the Hessian function
## @code{@var{phi}@{3@}} must accept one vector argument and return a matrix.
##
## The third and fourth arguments @var{g} and @var{h} are function handles
## pointing to functions that compute the equality constraints and the
## inequality constraints, respectively. If the problem does not have
## equality (or inequality) constraints, then use an empty matrix ([]) for
## @var{g} (or @var{h}). When supplied, these equality and inequality
## constraint functions must accept one vector argument and return a vector.
##
## The third and fourth arguments may also be 2-element cell arrays of
## function handles. The first element should point to the constraint
## function and the second should point to a function that computes the
## gradient of the constraint function:
## @tex
## $$
## \Bigg( {\partial f(x) \over \partial x_1},
## {\partial f(x) \over \partial x_2}, \ldots,
## {\partial f(x) \over \partial x_N} \Bigg)^T
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## [ d f(x) d f(x) d f(x) ]
## transpose ( [ ------ ----- ... ------ ] )
## [ dx_1 dx_2 dx_N ]
## @end group
## @end example
##
## @end ifnottex
## The fifth and sixth arguments, @var{lb} and @var{ub}, contain lower and
## upper bounds on @var{x} and when provided must be vectors of the same size
## as the the vector @var{x0}. The bounds must be consistent with the
## equality and inequality constraints @var{g} and @var{h}.
##
## The seventh argument @var{maxiter} specifies the maximum number of
## iterations. The default value is 100.
##
## The eighth argument @var{tolerance} specifies the tolerance for the stopping
## criteria. The default value is @code{sqrt (eps)}.
##
## The value returned in @var{info} may be one of the following:
##
## @table @asis
## @item 101
## The algorithm terminated normally.
## All constraints meet the specified tolerance.
##
## @item 102
## The BFGS update failed.
##
## @item 103
## The maximum number of iterations was reached.
##
## @item 104
## The stepsize has become too small, i.e.,
## @tex
## $\Delta x,$
## @end tex
## @ifnottex
## delta @var{x},
## @end ifnottex
## is less than @code{@var{tol} * norm (x)}.
## @end table
##
## An example of calling @code{sqp}:
##
## @example
## function r = g (x)
## r = [ sumsq(x)-10;
## x(2)*x(3)-5*x(4)*x(5);
## x(1)^3+x(2)^3+1 ];
## endfunction
##
## function obj = phi (x)
## obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
## endfunction
##
## x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
##
## [x, obj, info, iter, nf, lambda] = sqp (x0, @@phi, @@g, [])
##
## x =
##
## -1.71714
## 1.59571
## 1.82725
## -0.76364
## -0.76364
##
## obj = 0.053950
## info = 101
## iter = 8
## nf = 10
## lambda =
##
## -0.0401627
## 0.0379578
## -0.0052227
## @end example
##
## @seealso{qp}
## @end deftypefn
function [x, obj, info, iter, nf, lambda] = sqp (x0, objf, cef, cif, lb, ub, maxiter, tolerance)
globals = struct (); # data and handles, needed and changed by subfunctions
if (nargin < 2 || nargin == 5)
print_usage ();
endif
if (! isvector (x0))
error ("sqp: X0 must be a vector");
endif
if (rows (x0) == 1)
x0 = x0';
endif
have_grd = 0;
have_hess = 0;
if (iscell (objf))
switch (numel (objf))
case 1
obj_fcn = objf{1};
obj_grd = @(x, obj) fd_obj_grd (x, obj, obj_fcn);
case 2
obj_fcn = objf{1};
obj_grd = objf{2};
have_grd = 1;
case 3
obj_fcn = objf{1};
obj_grd = objf{2};
obj_hess = objf{3};
have_grd = 1;
have_hess = 1;
otherwise
error ("sqp: invalid objective function specification");
endswitch
else
obj_fcn = objf; # No cell array, only obj_fcn set
obj_grd = @(x, obj) fd_obj_grd (x, obj, obj_fcn);
endif
ce_fcn = @empty_cf;
ce_grd = @empty_jac;
if (nargin > 2)
if (iscell (cef))
switch (numel (cef))
case 1
ce_fcn = cef{1};
ce_grd = @(x) fd_ce_jac (x, ce_fcn);
case 2
ce_fcn = cef{1};
ce_grd = cef{2};
otherwise
error ("sqp: invalid equality constraint function specification");
endswitch
elseif (! isempty (cef))
ce_fcn = cef; # No cell array, only constraint equality function set
ce_grd = @(x) fd_ce_jac (x, ce_fcn);
endif
endif
ci_fcn = @empty_cf;
ci_grd = @empty_jac;
if (nargin > 3)
## constraint function given by user with possible gradient
globals.cif = cif;
## constraint function given by user without gradient
globals.cifcn = @empty_cf;
if (iscell (cif))
if (length (cif) > 0)
globals.cifcn = cif{1};
endif
elseif (! isempty (cif))
globals.cifcn = cif;
endif
if (nargin < 5 || (nargin > 5 && isempty (lb) && isempty (ub)))
## constraint inequality function only without any bounds
ci_grd = @(x) fd_ci_jac (x, globals.cifcn);
if (iscell (cif))
switch (length (cif))
case 1
ci_fcn = cif{1};
case 2
ci_fcn = cif{1};
ci_grd = cif{2};
otherwise
error ("sqp: invalid inequality constraint function specification");
endswitch
elseif (! isempty (cif))
ci_fcn = cif; # No cell array, only constraint inequality function set
endif
else
## constraint inequality function with bounds present
lb_idx = ub_idx = true (size (x0));
ub_grad = - (lb_grad = eye (rows (x0)));
## if unspecified set ub and lb to +/-Inf, preserving single type
if (isempty (lb))
if (isa (x0, "single"))
lb = - inf (size (x0), "single");
else
lb = - inf (size (x0));
endif
endif
if (isvector (lb))
lb = lb(:);
lb_idx(:) = (lb != -Inf);
globals.lb = lb(lb_idx, 1);
lb_grad = lb_grad(lb_idx, :);
else
error ("sqp: invalid lower bound");
endif
if (isempty (ub))
if (isa (x0, "single"))
ub = inf (size (x0), "single");
else
ub = inf (size (x0));
endif
endif
if (isvector (ub))
ub = ub(:);
ub_idx(:) = (ub != Inf);
globals.ub = ub(ub_idx, 1);
ub_grad = ub_grad(ub_idx, :);
else
error ("sqp: invalid upper bound");
endif
if (any (globals.lb > globals.ub))
error ("sqp: upper bound smaller than lower bound");
endif
bounds_grad = [lb_grad; ub_grad];
ci_fcn = @(x) cf_ub_lb (x, lb_idx, ub_idx, globals);
ci_grd = @(x) cigrad_ub_lb (x, bounds_grad, globals);
endif
endif # if (nargin > 3)
iter_max = 100;
if (nargin > 6 && ! isempty (maxiter))
if (isscalar (maxiter) && maxiter > 0 && fix (maxiter) == maxiter)
iter_max = maxiter;
else
error ("sqp: invalid number of maximum iterations");
endif
endif
tol = sqrt (eps);
if (nargin > 7 && ! isempty (tolerance))
if (isscalar (tolerance) && tolerance > 0)
tol = tolerance;
else
error ("sqp: invalid value for TOLERANCE");
endif
endif
## Initialize variables for search loop
## Seed x with initial guess and evaluate objective function, constraints,
## and gradients at initial value x0.
##
## obj_fcn -- objective function
## obj_grad -- objective gradient
## ce_fcn -- equality constraint functions
## ci_fcn -- inequality constraint functions
## A == [grad_{x_1} cx_fun, grad_{x_2} cx_fun, ..., grad_{x_n} cx_fun]^T
x = x0;
obj = feval (obj_fcn, x0);
globals.nfev = 1;
if (have_grd)
c = feval (obj_grd, x0);
else
c = feval (obj_grd, x0, obj);
endif
## Choose an initial NxN symmetric positive definite Hessian approximation B.
n = length (x0);
if (have_hess)
B = feval (obj_hess, x0);
else
B = eye (n, n);
endif
ce = feval (ce_fcn, x0);
F = feval (ce_grd, x0);
ci = feval (ci_fcn, x0);
C = feval (ci_grd, x0);
A = [F; C];
## Choose an initial lambda (x is provided by the caller).
lambda = 100 * ones (rows (A), 1);
qp_iter = 1;
alpha = 1;
info = 0;
iter = 0;
## report (); # Called with no arguments to initialize reporting
## report (iter, qp_iter, alpha, __sqp_nfev__, obj);
while (++iter < iter_max)
## Check convergence. This is just a simple check on the first
## order necessary conditions.
nr_f = rows (F);
lambda_e = lambda((1:nr_f)');
lambda_i = lambda((nr_f+1:end)');
con = [ce; ci];
t0 = norm (c - A' * lambda);
t1 = norm (ce);
t2 = all (ci >= 0);
t3 = all (lambda_i >= 0);
t4 = norm (lambda .* con);
## Normal convergence. All constraints are satisfied
## and objective has converged.
if (t2 && t3 && max ([t0; t1; t4]) < tol)
info = 101;
break;
endif
## Compute search direction p by solving QP.
g = -ce;
d = -ci;
old_lambda = lambda;
[p, obj_qp, INFO, lambda] = qp (x, B, c, F, g, [], [], d, C,
Inf (size (d)), struct ("TolX", tol));
info = INFO.info;
## FIXME: check QP solution and attempt to recover if it has failed.
## For now, just warn about possible problems.
id = "Octave:SQP-QP-subproblem";
switch (info)
case 2
warning (id, "sqp: QP subproblem is non-convex and unbounded");
case 3
warning (id, "sqp: QP subproblem failed to converge in %d iterations",
INFO.solveiter);
case 6
warning (id, "sqp: QP subproblem is infeasible");
lambda = old_lambda; # The return value was size 0x0 in this case.
endswitch
## Choose mu such that p is a descent direction for the chosen
## merit function phi.
[x_new, alpha, obj_new, globals] = ...
linesearch_L1 (x, p, obj_fcn, obj_grd, ce_fcn, ci_fcn, lambda, ...
obj, c, globals);
delx = x_new - x;
## Check if step size has become too small (indicates lack of progress).
if (norm (delx) < tol * norm (x))
info = 104;
break;
endif
## Evaluate objective function, constraints, and gradients at x_new.
if (have_grd)
c_new = feval (obj_grd, x_new);
else
c_new = feval (obj_grd, x_new, obj_new);
endif
ce_new = feval (ce_fcn, x_new);
F_new = feval (ce_grd, x_new);
ci_new = feval (ci_fcn, x_new);
C_new = feval (ci_grd, x_new);
A_new = [F_new; C_new];
## Set
##
## s = alpha * p
## y = grad_x L (x_new, lambda) - grad_x L (x, lambda})
y = c_new - c;
if (! isempty (A))
t = ((A_new - A)'*lambda);
y -= t;
endif
if (have_hess)
B = feval (obj_hess, x);
else
## Update B using a quasi-Newton formula.
delxt = delx';
## Damped BFGS. Or maybe we would actually want to use the Hessian
## of the Lagrangian, computed directly?
d1 = delxt*B*delx;
t1 = 0.2 * d1;
t2 = delxt*y;
if (t2 < t1)
theta = 0.8*d1/(d1 - t2);
else
theta = 1;
endif
r = theta*y + (1-theta)*B*delx;
d2 = delxt*r;
## Check if the next BFGS update will work properly.
## If d1 or d2 vanish, the BFGS update will fail.
if (d1 == 0 || d2 == 0)
info = 102;
break;
endif
B = B - B*delx*delxt*B/d1 + r*r'/d2;
endif
x = x_new;
obj = obj_new;
c = c_new;
ce = ce_new;
F = F_new;
ci = ci_new;
C = C_new;
A = A_new;
## report (iter, qp_iter, alpha, __sqp_nfev__, obj);
endwhile
## Check if we've spent too many iterations without converging.
if (iter >= iter_max)
info = 103;
endif
nf = globals.nfev;
endfunction
function [merit, obj, globals] = phi_L1 (obj, obj_fcn, ce_fcn, ci_fcn, ...
x, mu, globals)
ce = feval (ce_fcn, x);
ci = feval (ci_fcn, x);
idx = ci < 0;
con = [ce; ci(idx)];
if (isempty (obj))
obj = feval (obj_fcn, x);
globals.nfev += 1;
endif
merit = obj;
t = norm (con, 1) / mu;
if (! isempty (t))
merit += t;
endif
endfunction
function [x_new, alpha, obj, globals] = ...
linesearch_L1 (x, p, obj_fcn, obj_grd, ce_fcn, ci_fcn, lambda, obj, c, globals)
## Choose parameters
##
## eta in the range (0, 0.5)
## tau in the range (0, 1)
eta = 0.25;
tau = 0.5;
delta_bar = sqrt (eps);
if (isempty (lambda))
mu = 1 / delta_bar;
else
mu = 1 / (norm (lambda, Inf) + delta_bar);
endif
alpha = 1;
ce = feval (ce_fcn, x);
[phi_x_mu, obj, globals] = phi_L1 (obj, obj_fcn, ce_fcn, ci_fcn, x, ...
mu, globals);
D_phi_x_mu = c' * p;
d = feval (ci_fcn, x);
## only those elements of d corresponding
## to violated constraints should be included.
idx = d < 0;
t = - norm ([ce; d(idx)], 1) / mu;
if (! isempty (t))
D_phi_x_mu += t;
endif
while (1)
[p1, obj, globals] = phi_L1 ([], obj_fcn, ce_fcn, ci_fcn, ...
x+alpha*p, mu, globals);
p2 = phi_x_mu+eta*alpha*D_phi_x_mu;
if (p1 > p2)
## Reset alpha = tau_alpha * alpha for some tau_alpha in the
## range (0, tau).
tau_alpha = 0.9 * tau; # ??
alpha = tau_alpha * alpha;
else
break;
endif
endwhile
x_new = x + alpha * p;
endfunction
function grd = fdgrd (f, x, y0)
if (! isempty (f))
nx = length (x);
grd = zeros (nx, 1);
deltax = sqrt (eps);
for i = 1:nx
t = x(i);
x(i) += deltax;
grd(i) = (feval (f, x) - y0) / deltax;
x(i) = t;
endfor
else
grd = zeros (0, 1);
endif
endfunction
function jac = fdjac (f, x)
nx = length (x);
if (! isempty (f))
y0 = feval (f, x);
nf = length (y0);
nx = length (x);
jac = zeros (nf, nx);
deltax = sqrt (eps);
for i = 1:nx
t = x(i);
x(i) += deltax;
jac(:,i) = (feval (f, x) - y0) / deltax;
x(i) = t;
endfor
else
jac = zeros (0, nx);
endif
endfunction
function grd = fd_obj_grd (x, obj, obj_fcn)
grd = fdgrd (obj_fcn, x, obj);
endfunction
function res = empty_cf (x)
res = zeros (0, 1);
endfunction
function res = empty_jac (x)
res = zeros (0, length (x));
endfunction
function jac = fd_ce_jac (x, ce_fcn)
jac = fdjac (ce_fcn, x);
endfunction
function jac = fd_ci_jac (x, cifcn)
## cifcn = constraint function without gradients and lb or ub
jac = fdjac (cifcn, x);
endfunction
function res = cf_ub_lb (x, lbidx, ubidx, globals)
## function returning constraint evaluated at x, and distance between ub/lb
## and x, when they are specified (otherwise return empty)
## inequality constraints
if (! isempty (globals.cifcn))
ci = feval (globals.cifcn, x);
else
ci = [];
endif
## lower bounds
if (! isempty (globals.lb))
lb = x(lbidx, 1) - globals.lb;
else
lb = [];
endif
## upper bounds
if (! isempty (globals.ub))
ub = globals.ub - x(ubidx, 1);
else
ub = [];
endif
res = [ci; lb; ub];
endfunction
function res = cigrad_ub_lb (x, bgrad, globals)
cigradfcn = @(x) fd_ci_jac (x, globals.cifcn);
if (iscell (globals.cif) && length (globals.cif) > 1)
cigradfcn = globals.cif{2};
endif
if (isempty (cigradfcn))
res = bgrad;
else
res = [feval(cigradfcn,x); bgrad];
endif
endfunction
## Utility function used to debug sqp
function report (iter, qp_iter, alpha, nfev, obj)
if (nargin == 0)
printf (" Itn ItQP Step Nfev Objective\n");
else
printf ("%5d %4d %8.1g %5d %13.6e\n", iter, qp_iter, alpha, nfev, obj);
endif
endfunction
################################################################################
## Test Code
%!function r = __g (x)
%! r = [sumsq(x)-10;
%! x(2)*x(3)-5*x(4)*x(5);
%! x(1)^3+x(2)^3+1 ];
%!endfunction
%!
%!function obj = __phi (x)
%! obj = exp (prod (x)) - 0.5*(x(1)^3 + x(2)^3 + 1)^2;
%!endfunction
%!
%!test
%!
%! x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
%!
%! [x, obj, info, iter, nf, lambda] = sqp (x0, @__phi, @__g, []);
%!
%! x_opt = [-1.717143501952599;
%! 1.595709610928535;
%! 1.827245880097156;
%! -0.763643103133572;
%! -0.763643068453300];
%!
%! obj_opt = 0.0539498477702739;
%!
%! assert (x, x_opt, 10 * sqrt (eps));
%! assert (obj, obj_opt, sqrt (eps));
## Test input validation
%!error <Invalid call> sqp ()
%!error <Invalid call> sqp (1)
%!error <Invalid call> sqp (1,2,3,4,5)
%!error sqp (ones (2,2))
%!error sqp (1, cell (4,1))
%!error sqp (1, cell (3,1), cell (3,1))
%!error sqp (1, cell (3,1), cell (2,1), cell (3,1))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1), ones (2,2),[])
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),1,-1)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],-1)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],1.5)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[],-1)
|