1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
########################################################################
##
## Copyright (C) 2003-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{c} =} contourc (@var{z})
## @deftypefnx {} {@var{c} =} contourc (@var{z}, @var{vn})
## @deftypefnx {} {@var{c} =} contourc (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {@var{c} =} contourc (@var{x}, @var{y}, @var{z}, @var{vn})
## @deftypefnx {} {[@var{c}, @var{lev}] =} contourc (@dots{})
## Compute contour lines (isolines of constant Z value).
##
## The matrix @var{z} contains height values above the rectangular grid
## determined by @var{x} and @var{y}. If only a single input @var{z} is
## provided then @var{x} is taken to be @code{1:columns (@var{z})} and @var{y}
## is taken to be @code{1:rows (@var{z})}. The minimum data size is 2x2.
##
## The optional input @var{vn} is either a scalar denoting the number of
## contour lines to compute or a vector containing the Z values where lines
## will be computed. When @var{vn} is a vector the number of contour lines
## is @code{numel (@var{vn})}. However, to compute a single contour line
## at a given value use @code{@var{vn} = [val, val]}. If @var{vn} is omitted
## it defaults to 10.
##
## The return value @var{c} is a 2x@var{n} matrix containing the contour lines
## in the following format
##
## @example
## @group
## @var{c} = [lev1, x1, x2, @dots{}, levn, x1, x2, ...
## len1, y1, y2, @dots{}, lenn, y1, y2, @dots{}]
## @end group
## @end example
##
## @noindent
## in which contour line @var{n} has a level (height) of @var{levn} and length
## of @var{lenn}.
##
## The optional return value @var{lev} is a vector with the Z values of the
## contour levels.
##
## Example:
##
## @example
## @group
## x = 0:2;
## y = x;
## z = x' * y;
## c = contourc (x, y, z, 2:3)
## @result{} c =
## 2.0000 1.0000 1.0000 2.0000 2.0000 3.0000 1.5000 2.0000
## 4.0000 2.0000 2.0000 1.0000 1.0000 2.0000 2.0000 1.5000
## @end group
## @end example
## @seealso{contour, contourf, contour3, clabel}
## @end deftypefn
function [c, lev] = contourc (varargin)
if (nargin < 1 || nargin > 4)
print_usage ();
endif
if (nargin == 1)
z = varargin{1};
x = 1:columns (z);
y = 1:rows (z);
vn = 10;
elseif (nargin == 2)
z = varargin{1};
x = 1:columns (z);
y = 1:rows (z);
vn = varargin{2};
elseif (nargin == 3)
x = varargin{1};
y = varargin{2};
z = varargin{3};
vn = 10;
elseif (nargin == 4)
x = varargin{1};
y = varargin{2};
z = varargin{3};
vn = varargin{4};
endif
if (! (isnumeric (z) && isnumeric (x) && isnumeric (y))
|| ! (ismatrix (z) && ismatrix (x) && ismatrix (y))
|| ! (isreal (z) && isreal (x) && isreal (y)))
error ("contourc: X, Y, and Z must be real numeric matrices");
endif
if (rows (z) < 2 || columns (z) < 2)
error ("contourc: Z data must have at least 2 rows and 2 columns");
endif
if (isscalar (vn))
lev = linspace (min (z(:)), max (z(:)), vn+2)(2:end-1);
else
lev = unique (sort (vn));
endif
if (isvector (x) && isvector (y))
c = __contourc__ (x(:)', y(:)', z, lev);
elseif (! any (bsxfun (@minus, x, x(1,:))(:))
&& ! any (bsxfun (@minus, y, y(:,1))(:)))
## x,y are uniform grid (such as from meshgrid)
c = __contourc__ (x(1,:), y(:,1)', z, lev);
else
## Data is sampled over non-uniform mesh.
## Algorithm calculates contours for uniform grid
## and then interpolates values back to the non-uniform mesh.
## Uniform grid for __contourc__.
[nr, nc] = size (z);
ii = 1:nc;
jj = 1:nr;
c = __contourc__ (ii, jj, z, lev);
## Map the contour lines from index space (i,j)
## back to the original grid (x,y)
i = 1;
while (i < columns (c))
clen = c(2, i);
idx = i + (1:clen);
ci = c(1, idx);
cj = c(2, idx);
## Due to rounding errors, some elements of ci and cj can fall out of the
## range of ii and jj and interp2 would return NA for those values.
## The permitted range is enforced here:
ci = max (ci, 1); ci = min (ci, nc);
cj = max (cj, 1); cj = min (cj, nr);
c(1, idx) = interp2 (ii, jj, x, ci, cj);
c(2, idx) = interp2 (ii, jj, y, ci, cj);
i += (clen + 1);
endwhile
endif
endfunction
%!test
%! x = 0:2;
%! y = x;
%! z = x' * y;
%! c_exp = [2, 1, 1, 2, 2, 3, 1.5, 2; 4, 2, 2, 1, 1, 2, 2, 1.5];
%! lev_exp = [2 3];
%! [c_obs, lev_obs] = contourc (x, y, z, 2:3);
%! assert (c_obs, c_exp, eps);
%! assert (lev_obs, lev_exp, eps);
## Test input validation
%!error <Invalid call> contourc ()
%!error <Invalid call> contourc (1,2,3,4,5)
%!error <X, Y, and Z must be .* numeric> contourc ({3})
%!error <X, Y, and Z must be .* numeric> contourc ({1}, 2, 3)
%!error <X, Y, and Z must be .* numeric> contourc (1, {2}, 3)
%!error <X, Y, and Z must be .* matrices> contourc (ones (3,3,3))
%!error <X, Y, and Z must be .* matrices> contourc (ones (3,3,3), 2, 3)
%!error <X, Y, and Z must be .* matrices> contourc (1, ones (3,3,3), 3)
%!error <X, Y, and Z must be real> contourc (3i)
%!error <X, Y, and Z must be real> contourc (1i, 2, 3)
%!error <X, Y, and Z must be real> contourc (1, 2i, 3)
%!error <Z data must have at least 2 rows> contourc ([1, 2])
%!error <Z data must have at least .* 2 columns> contourc ([1; 2])
|