1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
########################################################################
##
## Copyright (C) 2005-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} fplot (@var{fcn})
## @deftypefnx {} {} fplot (@var{fcn}, @var{limits})
## @deftypefnx {} {} fplot (@dots{}, @var{tol})
## @deftypefnx {} {} fplot (@dots{}, @var{n})
## @deftypefnx {} {} fplot (@dots{}, @var{fmt})
## @deftypefnx {} {} fplot (@dots{}, @var{property}, @var{value}, @dots{})
## @deftypefnx {} {} fplot (@var{hax}, @dots{})
## @deftypefnx {} {[@var{x}, @var{y}] =} fplot (@dots{})
## Plot a function @var{fcn} within the range defined by @var{limits}.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## The limits of the plot are of the form @w{@code{[@var{xlo}, @var{xhi}]}}@ or
## @w{@code{[@var{xlo}, @var{xhi}, @var{ylo}, @var{yhi}]}}. If no limits
## are specified the default is @code{[-5, 5]}.
##
## The next three arguments are all optional and any number of them may be
## given in any order.
##
## @var{tol} is the relative tolerance to use for the plot and defaults
## to 2e-3 (.2%).
##
## @var{n} is the minimum number of points to use. When @var{n} is specified,
## the maximum stepsize will be @code{(@var{xhi} - @var{xlo}) / @var{n}}. More
## than @var{n} points may still be used in order to meet the relative
## tolerance requirement.
##
## The @var{fmt} argument specifies the linestyle to be used by the plot
## command.
##
## Multiple property-value pairs may also be specified, but they must appear
## in pairs. These arguments are applied to the line objects drawn by
## @code{plot}.
##
## The full list of line properties is documented at
## @ref{Line Properties}.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## With no output arguments, the results are immediately plotted. With two
## output arguments, the 2-D plot data is returned. The data can subsequently
## be plotted manually with @code{plot (@var{x}, @var{y})}.
##
## Example:
##
## @example
## @group
## fplot (@@cos, [0, 2*pi])
## fplot ("[cos(x), sin(x)]", [0, 2*pi])
## @end group
## @end example
##
## Programming Notes:
##
## @code{fplot} works best with continuous functions. Functions with
## discontinuities are unlikely to plot well. This restriction may be removed
## in the future.
##
## @code{fplot} performance is better when the function accepts and returns a
## vector argument. Consider this when writing user-defined functions and use
## element-by-element operators such as @code{.*}, @code{./}, etc.
##
## @seealso{ezplot, plot}
## @end deftypefn
function [X, Y] = fplot (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("fplot", varargin{:});
if (nargin < 1 || nargin > 5)
print_usage ();
endif
fcn = varargin{1};
if (isa (fcn, "inline"))
## Don't warn about intentional use of inline functions (Bug #62682)
warning ("off", "Octave:legacy-function", "local");
fcn = vectorize (inline (fcn));
nam = formula (fcn);
elseif (is_function_handle (fcn))
nam = func2str (fcn);
elseif (all (isalnum (fcn)))
nam = fcn;
elseif (ischar (fcn))
## Don't warn about intentional use of inline functions (Bug #62682)
warning ("off", "Octave:legacy-function", "local");
fcn = vectorize (inline (fcn));
nam = formula (fcn);
else
error ("fplot: FCN must be a function handle, inline function, or string");
endif
if (nargin > 1 && isnumeric (varargin{2}))
limits = varargin{2};
if (iscomplex (limits) || (numel (limits) != 2 && numel (limits) != 4))
error ("fplot: LIMITS must be a real vector with 2 or 4 elements");
endif
i = 3;
else
limits = [-5, 5];
i = 2;
endif
n = 5;
tol = 2e-3;
fmt = {};
prop_vals = {};
while (i <= numel (varargin))
arg = varargin{i};
if (ischar (arg))
[~, valid_fmt] = __pltopt__ ("fplot", arg, false);
if (valid_fmt)
fmt(end+1) = arg;
else
if (i == numel (varargin))
error ("fplot: bad input in position %d", i);
endif
prop_vals(end+(1:2)) = varargin([i, i+1]);
i++; # Skip PROPERTY.
endif
elseif (isnumeric (arg) && isscalar (arg) && arg > 0)
if (arg == fix (arg))
n = arg;
else
tol = arg;
endif
else
error ("fplot: bad input in position %d", i);
endif
i++;
endwhile
if (n != 5)
## n was specified
x0 = linspace (limits(1), limits(2), n/2 + 1)';
else
x0 = linspace (limits(1), limits(2), 5)';
n = 8;
endif
try
y0 = feval (fcn, x0);
if (isscalar (y0))
warning ("fplot: FCN is not a vectorized function which reduces performance");
fcn = @(x) arrayfun (fcn, x); # Create a new fcn that accepts vectors
y0 = feval (fcn, x0);
endif
catch
## feval failed, maybe it is because the function is not vectorized?
fcn = @(x) arrayfun (fcn, x); # Create a new fcn that accepts vectors
y0 = feval (fcn, x0);
warning ("fplot: FCN is not a vectorized function which reduces performance");
end_try_catch
x = linspace (limits(1), limits(2), n)';
y = feval (fcn, x);
if (rows (x0) == rows (y0))
fcn_transpose = false;
elseif (rows (x0) == columns (y0))
fcn_transpose = true;
y0 = y0.';
y = y.';
else
error ("fplot: invalid function FCN (# of outputs not equal to inputs)");
endif
err0 = Inf;
## FIXME: This algorithm should really use adaptive scaling as
## the numerical quadrature algorithms do so that extra points are
## used where they are needed and not spread evenly over the entire
## x-range. Try any function with a discontinuity, such as
## fplot (@tan, [-2, 2]) or fplot ("1./x", [-3, 2]), to see the
## problems with the current solution.
while (n < 2^18) # Something is wrong if we need more than 250K points
yi = interp1 (x0, y0, x, "linear");
## relative error calculation using average of [yi,y] as reference
## since neither estimate is known a priori to be better than the other.
err = 0.5 * max (abs ((yi - y) ./ (yi + y + eps))(:));
if (err < tol || abs (err - err0) < tol/2)
## Either relative tolerance has been met OR
## algorithm has stopped making any reasonable progress per iteration.
break;
endif
x0 = x;
y0 = y;
err0 = err;
n = 2 * (n - 1) + 1;
x = linspace (limits(1), limits(2), n)';
y = feval (fcn, x);
if (fcn_transpose)
y = y.';
endif
endwhile
if (nargout == 2)
X = x;
Y = y;
else
if (isempty (hax))
hax = gca ();
endif
hl = plot (hax, x, y, fmt{:});
if (isempty (get (hl(1), "displayname")))
## Set displayname for legend if FMT did not contain a name.
if (isvector (y))
set (hl, "displayname", nam);
else
for i = 1:columns (y)
nams{i} = sprintf ("%s(:,%i)", nam, i);
endfor
set (hl, {"displayname"}, nams(:));
endif
endif
## Properties passed as input arguments override other properties.
if (! isempty (prop_vals))
set (hl, prop_vals{:});
endif
axis (hax, limits);
legend (hax, "show");
endif
endfunction
%!demo
%! clf;
%! fplot (@cos, [0, 2*pi]);
%! title ("fplot() single function");
%!demo
%! clf;
%! fplot ("[cos(x), sin(x)]", [0, 2*pi]);
%! title ("fplot() multiple functions");
%!demo
%! clf;
%! fh = @(x) sin (pi*x) ./ (pi*x);
%! fplot (fh, [-5, 5]);
%! title ("fplot() sinc function (possible division by 0, near 0)");
%!test
%! ## Multi-valued function
%! [x, y] = fplot ("[cos(x), sin(x)]", [0, 2*pi]);
%! assert (columns (y) == 2);
%! assert (rows (x) == rows (y));
%! assert (y, [cos(x), sin(x)], -2e-3);
%!test
%! ## Function requiring transpose
%! fcn = @(x) 2 * x(:).';
%! [x, y] = fplot (fcn, [-1, 1]);
%! assert (columns (y) == 1);
%! assert (rows (x) == rows (y));
%! assert (y, 2*x);
%!test
%! ## Constant value function
%! fcn = @(x) 0;
%! [x, y] = fplot (fcn, [-1, 1]);
%! assert (columns (y) == 1);
%! assert (rows (x) == rows (y));
%! assert (y, repmat ([0], size (x)));
%!test <*59274>
%! ## Manual displayname overrides automatic legend entry
%! hf = figure ("visible", "off");
%! unwind_protect
%! fplot (@sin, [0, 3], "displayname", "mysin");
%! hl = legend ();
%! assert (get (hl, "string"), {"mysin"});
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
%!test <*59274>
%! ## displayname in format string overrides automatic legend entry
%! hf = figure ("visible", "off");
%! unwind_protect
%! fplot (@sin, [0, 3], "+;mysin;");
%! hl = legend ();
%! assert (get (hl, "string"), {"mysin"});
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
## Test input validation
%!error <Invalid call> fplot ()
%!error <Invalid call> fplot (1,2,3,4,5,6)
%!error <FCN must be a function handle> fplot (1, [0 1])
%!error <LIMITS must be a real vector> fplot (@cos, [i, 2*i])
%!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1])
%!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1 2 3])
%!error <bad input in position 2> fplot (@cos, "linewidth")
%!error <bad input in position 3> fplot (@cos, [-1,1], {1})
%!warning <FCN is not a vectorized function>
%! fcn = @(x) 0;
%! [x,y] = fplot (fcn, [-1,1]);
%!error <invalid function FCN>
%! fcn = @(x) [x;x];
%! fplot (fcn, [-1,1]);
|