1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} hist (@var{y})
## @deftypefnx {} {} hist (@var{y}, @var{nbins})
## @deftypefnx {} {} hist (@var{y}, @var{x})
## @deftypefnx {} {} hist (@var{y}, @var{x}, @var{norm})
## @deftypefnx {} {} hist (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {} hist (@var{hax}, @dots{})
## @deftypefnx {} {[@var{nn}, @var{xx}] =} hist (@dots{})
## Produce histogram counts or plots.
##
## With one vector input argument, @var{y}, plot a histogram of the values
## with 10 bins. The range of the histogram bins is determined by the
## range of the data (difference between maximum and minimum value in @var{y}).
## Extreme values are lumped into the first and last bins. If @var{y} is a
## matrix then plot a histogram where each bin contains one bar per input
## column of @var{y}.
##
## If the optional second argument is a scalar, @var{nbins}, it defines the
## number of bins.
##
## If the optional second argument is a vector, @var{x}, it defines the centers
## of the bins. The width of the bins is determined from the adjacent values
## in the vector. The total number of bins is @code{numel (@var{x})}.
##
## If a third argument @var{norm} is provided, the histogram is normalized.
## In case @var{norm} is a positive scalar, the resulting bars are normalized
## to @var{norm}. If @var{norm} is a vector of positive scalars of length
## @code{columns (@var{y})}, then the resulting bar of @code{@var{y}(:,i)} is
## normalized to @code{@var{norm}(i)}.
##
## @example
## @group
## [nn, xx] = hist (rand (10, 3), 5, [1 2 3]);
## sum (nn, 1)
## @result{} ans =
## 1 2 3
## @end group
## @end example
##
## The histogram's appearance may be modified by specifying property/value
## pairs to the underlying patch object. For example, the face and edge color
## may be modified:
##
## @example
## @group
## hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
## @end group
## @end example
##
## @noindent
## The full list of patch properties is documented at @ref{Patch Properties}.
## property. If not specified, the default colors for the histogram are taken
## from the @qcode{"Colormap"} property of the axes or figure.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## If an output is requested then no plot is made. Instead, return the values
## @var{nn} (numbers of elements) and @var{xx} (bin centers) such that
## @code{bar (@var{xx}, @var{nn})} will plot the histogram. If @var{y} is a
## vector, @var{nn} and @var{xx} will be row vectors. If @var{y} is an array,
## @var{nn} will be an array with one column of element counts for each column
## in @var{y}, and @var{xx} will be a column vector of bin centers.
##
## @seealso{histc, bar, pie, rose}
## @end deftypefn
function [nn, xx] = hist (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("hist", varargin{:});
if (nargin < 1)
print_usage ();
endif
## Process Y argument
iarg = 1;
y = varargin{iarg++};
if (! isreal (y))
error ("hist: Y must be real-valued");
endif
if (ndims (y) > 2)
error ("hist: Y must be a 2-D array");
endif
arg_is_vector = isvector (y);
if (arg_is_vector)
y = y(:);
endif
yfinite = y(isfinite (y))(:);
max_val = max (yfinite);
min_val = min (yfinite);
## Do not convert if input is of class single (or if already is double).
if (! isfloat (y))
max_val = double (max_val);
min_val = double (min_val);
endif
## Equidistant entries allow much more efficient algorithms.
equal_bin_spacing = true;
## Process possible second argument
if (nargin == 1 || ischar (varargin{iarg}))
n = 10;
## Use integer range values and perform division last to preserve
## accuracy. If max - min is less than 20*eps, treat as if min = max to
## avoid bug #65714 error.
if (min_val != max_val && diff ([min_val, max_val]) > 20 * eps)
x = 1:2:2*n;
x = ((max_val - min_val) * x + 2*n*min_val) / (2*n);
else
x = (-floor ((n-1)/2):ceil ((n-1)/2)) + min_val;
endif
x = x.'; # Convert to matrix
else
## Parse bin specification argument
x = varargin{iarg++};
if (! isreal (x))
error ("hist: bin specification must be a numeric scalar or vector");
endif
## Convert integer types or a single specification of N bins to double
if (! isfloat (x) || isscalar (x))
x = double (x);
endif
if (isscalar (x))
n = fix (x);
if (n <= 0)
error ("hist: number of bins NBINS must be positive");
endif
## Use integer range values and perform division last to preserve
## accuracy. If max - min is less than 20*eps, treat as if min = max
## to avoid bug #65714 error.
if (min_val != max_val && diff ([min_val, max_val]) > 20 * eps)
x = 1:2:2*n;
x = ((max_val - min_val) * x + 2*n*min_val) / (2*n);
else
x = (-floor ((n-1)/2):ceil ((n-1)/2)) + min_val;
endif
x = x.'; # Convert to matrix
elseif (isvector (x))
equal_bin_spacing = strcmp (typeinfo (x), "range");
if (! equal_bin_spacing)
diffs = diff (x);
if (all (diffs == diffs(1)))
equal_bin_spacing = true;
endif
endif
x = x(:);
if (! issorted (x))
warning ("hist: bin values X not sorted on input");
x = sort (x);
endif
else
error ("hist: bin specification must be a scalar or vector");
endif
endif
## Check for third argument (normalization)
norm = false;
if (nargin > 2 && ! ischar (varargin{iarg}))
norm = varargin{iarg++};
if (! isnumeric (norm) || ! all (norm > 0))
error ("hist: NORM must be a numeric constant > 0");
endif
if (! isvector (norm) ...
|| ! (length (norm) == 1 || length (norm) == columns (y)))
error ("hist: NORM must be scalar or vector of length 'columns (Y)'");
endif
norm = norm (:).'; # Ensure vector orientation.
endif
## Perform histogram calculation
cutoff = (x(1:end-1,:) + x(2:end,:)) / 2;
n = rows (x);
y_nc = columns (y);
if (n < 11 * (1 + (! equal_bin_spacing)))
## The following algorithm works fastest for small n.
nanidx = isnan (y);
chist = zeros (n+1, y_nc);
for i = 1:n-1
chist(i+1,:) = sum (y <= cutoff(i));
endfor
chist(n+1,:) = sum (! nanidx);
freq = diff (chist);
else
## Lookup is more efficient if y is sorted, but sorting costs.
if (! equal_bin_spacing && n > sqrt (rows (y) * 1e4))
y = sort (y);
endif
nanidx = isnan (y);
y(nanidx) = 0;
freq = zeros (n, y_nc);
if (equal_bin_spacing)
if (n < 3)
d = 1;
else
d = (x(end) - x(1)) / (length (x) - 1);
endif
cutlen = length (cutoff);
for j = 1:y_nc
freq(:,j) = accumarray (1 + max (0, min (cutlen, ceil ((double (y(:,j))
- cutoff(1)) / d))),
double (! nanidx(:,j)),
[n, 1]);
endfor
else
for j = 1:y_nc
i = lookup (cutoff, y(:,j));
i = 1 + i - (cutoff(max (i, 1)) == y(:,j));
freq(:,j) = accumarray (i, double (! nanidx(:,j)), [n, 1]);
endfor
endif
endif
if (norm)
## Normalize the histogram
freq .*= norm ./ sum (! nanidx);
endif
if (nargout == 0)
if (isempty (hax))
hax = gca ();
endif
bar (hax, x, freq, "hist", varargin{iarg:end});
else
if (arg_is_vector)
## Matlab compatibility requires a row vector return
nn = freq.';
xx = x.';
else
nn = freq;
xx = x;
endif
endif
endfunction
%!test
%! [nn,xx] = hist ([1:4], 3);
%! assert (xx, [1.5,2.5,3.5]);
%! assert (nn, [2,1,1]);
%!test
%! [nn,xx] = hist ([1:4]', 3);
%! assert (xx, [1.5,2.5,3.5]);
%! assert (nn, [2,1,1]);
%!test
%! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3], [1, 2, 3]);
%! assert (xx, [1,2,3]);
%! assert (nn, [3,2,1]);
%!test
%! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3], [1, 2, 3], 6);
%! assert (xx, [1,2,3]);
%! assert (nn, [3,2,1]);
%!test # Multiple columns
%! [nn,xx] = hist ([[1:4]', [1:4]'], 3);
%! assert (xx, [1.5;2.5;3.5]);
%! assert (nn, [[2,1,1]', [2,1,1]']);
%!test
%! for n = [10, 30, 100, 1000]
%! assert (sum (hist ([1:n], n)), n);
%! assert (sum (hist ([1:n], [2:n-1])), n);
%! assert (sum (hist ([1:n], [1:n])), n);
%! assert (sum (hist ([1:n], 29)), n);
%! assert (sum (hist ([1:n], 30)), n);
%! endfor
%!assert (hist (1,1), 1)
%!test <*54326> # All values identical
%! [nn,xx] = hist (ones (1,5), 3);
%! assert (nn, [0,5,0]);
%! assert (xx, [0,1,2]);
%!assert (size (hist (randn (750,240), 200)), [200, 240])
## Test normalization
%!assert <*42394> (isempty (hist (rand (10,2), 0:5, 1)), false)
%!assert <*42394> (isempty (hist (rand (10,2), 0:5, [1 1])), false)
%!test <*60783>
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, 1);
%! assert (sum (nn, 1), [1 1 1]);
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, [1 2 3]);
%! assert (sum (nn, 1), [1 2 3]);
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, [1 2 3]');
%! assert (sum (nn, 1), [1 2 3]);
%!test <*47707>
%! y = [1 9 2 2 9 3 8 9 1 7 1 1 3 2 4 4 8 2 1 9 4 1 ...
%! 2 3 1 1 6 5 5 3 9 9 1 1 8 7 7 2 4 1];
%! [n, x] = hist (y, 10);
%! [nn, xx] = hist (uint8 (y), 10);
%! assert (nn, n);
%! assert (xx, x);
%!
%! ## test again with N > 26 because there's a special case for it
%! [n, x] = hist (y, 30);
%! [nn, xx] = hist (uint8 (y), 30);
%! assert (nn, n);
%! assert (xx, x);
## Test logical input
%!test
%! y = [0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0];
%! [n, x] = hist (y, 10);
%! [nn, xx] = hist (logical (y), 10);
%! assert (nn, n);
%! assert (xx, x);
%!
%! ## test again with N > 26 because there's a special case for it
%! [n, x] = hist (y, 30);
%! [nn, xx] = hist (logical (y), 30);
%! assert (nn, n);
%! assert (xx, x);
## Second output argument must be of class single if data is class single.
%!assert (class (nthargout (2, @hist, rand (10, 1, "single"))), "single")
## Handle second argument correctly, even when it's class integer
%!test
%! y = [2.4, 2.5, 2.6, 5.4, 5.5, 5.6];
%! n = [2, 3, 1];
%! x = [1, 4, 7];
%! [nn, xx] = hist (y, uint8 ([1 4 7]));
%! assert (nn, n);
%! assert (xx, x);
## Test bin centers
%!test
%! y = [2.4, 2.5, 2.6, 5.4, 5.5, 5.6];
%! s = (5.6 - 2.4) / 6;
%! x = [2.4+s, 4.0, 5.6-s];
%! n = [3, 0, 3];
%!
%! [nn, xx] = hist (y, 3);
%! assert (nn, n);
%! assert (xx, x, 2*eps);
%!
%! [nn, xx] = hist (y, uint8 (3));
%! assert (nn, n);
%! assert (xx, x, 2*eps);
%!
%! [nn, xx] = hist (y, single (3));
%! assert (nn, n);
%! assert (xx, single (x), 2*eps ("single"));
%!test <*53199>
%! a = [ 1, 2, 3, 4, 0;
%! 5, 4, 6, 7, 8;
%! 9, 12, 11, 10, 0;
%! 13, 16, 15, 14, 0;
%! 17, 20, 19, 18, 0;
%! 21, 22, 23, 2, 0;
%! 24, 27, 26, 25, 0;
%! 28, 31, 30, 29, 0;
%! 32, 35, 34, 33, 0;
%! 36, 39, 38, 37, 0;
%! 40, 43, 42, 41, 0;
%! 44, 47, 46, 45, 0;
%! 48, 51, 50, 49, 0;
%! 52, 55, 54, 53, 0];
%! n = max (a(:));
%! [cnt1, ctr1] = hist(a(:), 1:n);
%! [cnt2, ctr2] = hist(a(:), n);
%! assert (cnt1, cnt2);
%! assert (ctr1, 1:n);
%! assert (ctr2, 0.5:n);
## Test Infinite values and calculation of bins
%!test
%! y = [-Inf, NaN, 10, Inf, 0];
%! [nn, xx] = hist (y);
%! assert (nn, [2 0 0 0 0 0 0 0 0 2]);
%! assert (xx, 0.5:10);
## Test return class of second output
%!test <*56465>
%! [nn, xx] = hist (double (1:10), single (7));
%! assert (isa (xx, "double"));
%! [nn, xx] = hist (single (1:10), double (7));
%! assert (isa (xx, "single"));
%! [nn, xx] = hist (single (1:10), double ([1, 5, 10]));
%! assert (isa (xx, "double"));
%! [nn, xx] = hist (double (1:10), single ([1, 5, 10]));
%! assert (isa (xx, "single"));
%!test <*65714> # Avoid error if diff(y) is very small.
%! a = [1, 1+eps, 1+ 15*eps];
%! hf = figure ("visible", "off");
%! unwind_protect
%! hax = axes ("parent", hf);
%! hist (hax, a);
%! hp = get (hax, "children");
%! assert (max (get (hp, "ydata")(:)), 3);
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
%!test <*65714> # Avoid error if diff(y) is very small, with specified X.
%! a = [1, 1+eps, 1+ 15*eps];
%! hf = figure ("visible", "off");
%! unwind_protect
%! hax = axes ("parent", hf);
%! hist (hax, a, 5);
%! hp = get (hax, "children");
%! assert (max (get (hp, "ydata")(:)), 3);
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
## Test input validation
%!error <Invalid call> hist ()
%!error <Y must be real-valued> hist (2+i)
%!error <bin specification must be a numeric> hist (1, {0,1,2})
%!error <number of bins NBINS must be positive> hist (1, 0)
%!test
%! hf = figure ("visible", "off");
%! hax = gca ();
%! unwind_protect
%! fail ("hist (hax, 1, [2 1 0])", "warning", "bin values X not sorted");
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
%!error <bin specification must be a scalar or vector> hist (1, ones (2,2))
%!error <NORM must be a numeric constant> hist (1,1, {1})
%!error <NORM must be a numeric constant . 0> hist (1,1, -1)
%!error <NORM must be scalar or vector> hist (1,1, ones (4))
|