File: hist.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (459 lines) | stat: -rw-r--r-- 14,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} hist (@var{y})
## @deftypefnx {} {} hist (@var{y}, @var{nbins})
## @deftypefnx {} {} hist (@var{y}, @var{x})
## @deftypefnx {} {} hist (@var{y}, @var{x}, @var{norm})
## @deftypefnx {} {} hist (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {} hist (@var{hax}, @dots{})
## @deftypefnx {} {[@var{nn}, @var{xx}] =} hist (@dots{})
## Produce histogram counts or plots.
##
## With one vector input argument, @var{y}, plot a histogram of the values
## with 10 bins.  The range of the histogram bins is determined by the
## range of the data (difference between maximum and minimum value in @var{y}).
## Extreme values are lumped into the first and last bins.  If @var{y} is a
## matrix then plot a histogram where each bin contains one bar per input
## column of @var{y}.
##
## If the optional second argument is a scalar, @var{nbins}, it defines the
## number of bins.
##
## If the optional second argument is a vector, @var{x}, it defines the centers
## of the bins.  The width of the bins is determined from the adjacent values
## in the vector.  The total number of bins is @code{numel (@var{x})}.
##
## If a third argument @var{norm} is provided, the histogram is normalized.
## In case @var{norm} is a positive scalar, the resulting bars are normalized
## to @var{norm}.  If @var{norm} is a vector of positive scalars of length
## @code{columns (@var{y})}, then the resulting bar of @code{@var{y}(:,i)} is
## normalized to @code{@var{norm}(i)}.
##
## @example
## @group
## [nn, xx] = hist (rand (10, 3), 5, [1 2 3]);
## sum (nn, 1)
## @result{} ans =
##       1   2   3
## @end group
## @end example
##
## The histogram's appearance may be modified by specifying property/value
## pairs to the underlying patch object.  For example, the face and edge color
## may be modified:
##
## @example
## @group
## hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
## @end group
## @end example
##
## @noindent
## The full list of patch properties is documented at @ref{Patch Properties}.
## property.  If not specified, the default colors for the histogram are taken
## from the @qcode{"Colormap"} property of the axes or figure.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## If an output is requested then no plot is made.  Instead, return the values
## @var{nn} (numbers of elements) and @var{xx} (bin centers) such that
## @code{bar (@var{xx}, @var{nn})} will plot the histogram.  If @var{y} is a
## vector, @var{nn} and @var{xx} will be row vectors.  If @var{y} is an array,
## @var{nn} will be an array with one column of element counts for each column
## in @var{y}, and @var{xx} will be a column vector of bin centers.
##
## @seealso{histc, bar, pie, rose}
## @end deftypefn

function [nn, xx] = hist (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("hist", varargin{:});

  if (nargin < 1)
    print_usage ();
  endif

  ## Process Y argument
  iarg = 1;
  y = varargin{iarg++};

  if (! isreal (y))
    error ("hist: Y must be real-valued");
  endif

  if (ndims (y) > 2)
    error ("hist: Y must be a 2-D array");
  endif

  arg_is_vector = isvector (y);
  if (arg_is_vector)
    y = y(:);
  endif

  yfinite = y(isfinite (y))(:);
  max_val = max (yfinite);
  min_val = min (yfinite);
  ## Do not convert if input is of class single (or if already is double).
  if (! isfloat (y))
    max_val = double (max_val);
    min_val = double (min_val);
  endif

  ## Equidistant entries allow much more efficient algorithms.
  equal_bin_spacing = true;

  ## Process possible second argument
  if (nargin == 1 || ischar (varargin{iarg}))
    n = 10;
    ## Use integer range values and perform division last to preserve
    ## accuracy.  If max - min is less than 20*eps, treat as if min = max to
    ## avoid bug #65714 error.
    if (min_val != max_val && diff ([min_val, max_val]) > 20 * eps)
      x = 1:2:2*n;
      x = ((max_val - min_val) * x + 2*n*min_val) / (2*n);
    else
      x = (-floor ((n-1)/2):ceil ((n-1)/2)) + min_val;
    endif
    x = x.';  # Convert to matrix
  else
    ## Parse bin specification argument
    x = varargin{iarg++};
    if (! isreal (x))
      error ("hist: bin specification must be a numeric scalar or vector");
    endif

    ## Convert integer types or a single specification of N bins to double
    if (! isfloat (x) || isscalar (x))
      x = double (x);
    endif

    if (isscalar (x))
      n = fix (x);
      if (n <= 0)
        error ("hist: number of bins NBINS must be positive");
      endif
      ## Use integer range values and perform division last to preserve
      ## accuracy.  If max - min is less than 20*eps, treat as if min = max
      ## to avoid bug #65714 error.
      if (min_val != max_val && diff ([min_val, max_val]) > 20 * eps)
        x = 1:2:2*n;
        x = ((max_val - min_val) * x + 2*n*min_val) / (2*n);
      else
        x = (-floor ((n-1)/2):ceil ((n-1)/2)) + min_val;
      endif
      x = x.';  # Convert to matrix
    elseif (isvector (x))
      equal_bin_spacing = strcmp (typeinfo (x), "range");
      if (! equal_bin_spacing)
        diffs = diff (x);
        if (all (diffs == diffs(1)))
          equal_bin_spacing = true;
        endif
      endif
      x = x(:);
      if (! issorted (x))
        warning ("hist: bin values X not sorted on input");
        x = sort (x);
      endif
    else
      error ("hist: bin specification must be a scalar or vector");
    endif
  endif

  ## Check for third argument (normalization)
  norm = false;
  if (nargin > 2 && ! ischar (varargin{iarg}))
    norm = varargin{iarg++};
    if (! isnumeric (norm) || ! all (norm > 0))
      error ("hist: NORM must be a numeric constant > 0");
    endif
    if (! isvector (norm) ...
        || ! (length (norm) == 1 || length (norm) == columns (y)))
      error ("hist: NORM must be scalar or vector of length 'columns (Y)'");
    endif
    norm = norm (:).';  # Ensure vector orientation.
  endif

  ## Perform histogram calculation
  cutoff = (x(1:end-1,:) + x(2:end,:)) / 2;

  n = rows (x);
  y_nc = columns (y);

  if (n < 11 * (1 + (! equal_bin_spacing)))
    ## The following algorithm works fastest for small n.
    nanidx = isnan (y);
    chist = zeros (n+1, y_nc);
    for i = 1:n-1
      chist(i+1,:) = sum (y <= cutoff(i));
    endfor
    chist(n+1,:) = sum (! nanidx);

    freq = diff (chist);
  else
    ## Lookup is more efficient if y is sorted, but sorting costs.
    if (! equal_bin_spacing && n > sqrt (rows (y) * 1e4))
      y = sort (y);
    endif

    nanidx = isnan (y);
    y(nanidx) = 0;
    freq = zeros (n, y_nc);
    if (equal_bin_spacing)
      if (n < 3)
        d = 1;
      else
        d = (x(end) - x(1)) / (length (x) - 1);
      endif
      cutlen = length (cutoff);
      for j = 1:y_nc
        freq(:,j) = accumarray (1 + max (0, min (cutlen, ceil ((double (y(:,j))
                                                         - cutoff(1)) / d))),
                                double (! nanidx(:,j)),
                                [n, 1]);
      endfor
    else
      for j = 1:y_nc
        i = lookup (cutoff, y(:,j));
        i = 1 + i - (cutoff(max (i, 1)) == y(:,j));
        freq(:,j) = accumarray (i, double (! nanidx(:,j)), [n, 1]);
      endfor
    endif
  endif

  if (norm)
    ## Normalize the histogram
    freq .*= norm ./ sum (! nanidx);
  endif

  if (nargout == 0)
    if (isempty (hax))
      hax = gca ();
    endif
    bar (hax, x, freq, "hist", varargin{iarg:end});
  else
    if (arg_is_vector)
      ## Matlab compatibility requires a row vector return
      nn = freq.';
      xx = x.';
    else
      nn = freq;
      xx = x;
    endif
  endif

endfunction


%!test
%! [nn,xx] = hist ([1:4], 3);
%! assert (xx, [1.5,2.5,3.5]);
%! assert (nn, [2,1,1]);
%!test
%! [nn,xx] = hist ([1:4]', 3);
%! assert (xx, [1.5,2.5,3.5]);
%! assert (nn, [2,1,1]);
%!test
%! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3], [1, 2, 3]);
%! assert (xx, [1,2,3]);
%! assert (nn, [3,2,1]);
%!test
%! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3], [1, 2, 3], 6);
%! assert (xx, [1,2,3]);
%! assert (nn, [3,2,1]);
%!test  # Multiple columns
%! [nn,xx] = hist ([[1:4]', [1:4]'], 3);
%! assert (xx, [1.5;2.5;3.5]);
%! assert (nn, [[2,1,1]', [2,1,1]']);
%!test
%! for n = [10, 30, 100, 1000]
%!   assert (sum (hist ([1:n], n)), n);
%!   assert (sum (hist ([1:n], [2:n-1])), n);
%!   assert (sum (hist ([1:n], [1:n])), n);
%!   assert (sum (hist ([1:n], 29)), n);
%!   assert (sum (hist ([1:n], 30)), n);
%! endfor
%!assert (hist (1,1), 1)
%!test <*54326> # All values identical
%! [nn,xx] = hist (ones (1,5), 3);
%! assert (nn, [0,5,0]);
%! assert (xx, [0,1,2]);
%!assert (size (hist (randn (750,240), 200)), [200, 240])

## Test normalization
%!assert <*42394> (isempty (hist (rand (10,2), 0:5, 1)), false)
%!assert <*42394> (isempty (hist (rand (10,2), 0:5, [1 1])), false)
%!test <*60783>
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, 1);
%! assert (sum (nn, 1), [1 1 1]);
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, [1 2 3]);
%! assert (sum (nn, 1), [1 2 3]);
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, [1 2 3]');
%! assert (sum (nn, 1), [1 2 3]);

%!test <*47707>
%! y = [1  9  2  2  9  3  8  9  1  7  1  1  3  2  4  4  8  2  1  9  4  1 ...
%!      2  3  1  1  6  5  5  3  9  9  1  1  8  7  7  2  4  1];
%! [n, x] = hist (y, 10);
%! [nn, xx] = hist (uint8 (y), 10);
%! assert (nn, n);
%! assert (xx, x);
%!
%! ## test again with N > 26 because there's a special case for it
%! [n, x] = hist (y, 30);
%! [nn, xx] = hist (uint8 (y), 30);
%! assert (nn, n);
%! assert (xx, x);

## Test logical input
%!test
%! y = [0  1  0  0  1  0  1  1  0  1  0  0  0  0  0  0  1  0];
%! [n, x] = hist (y, 10);
%! [nn, xx] = hist (logical (y), 10);
%! assert (nn, n);
%! assert (xx, x);
%!
%! ## test again with N > 26 because there's a special case for it
%! [n, x] = hist (y, 30);
%! [nn, xx] = hist (logical (y), 30);
%! assert (nn, n);
%! assert (xx, x);

## Second output argument must be of class single if data is class single.
%!assert (class (nthargout (2, @hist, rand (10, 1, "single"))), "single")

## Handle second argument correctly, even when it's class integer
%!test
%! y = [2.4, 2.5, 2.6, 5.4, 5.5, 5.6];
%! n = [2, 3, 1];
%! x = [1, 4, 7];
%! [nn, xx] = hist (y, uint8 ([1 4 7]));
%! assert (nn, n);
%! assert (xx, x);

## Test bin centers
%!test
%! y = [2.4, 2.5, 2.6, 5.4, 5.5, 5.6];
%! s = (5.6 - 2.4) / 6;
%! x = [2.4+s, 4.0, 5.6-s];
%! n = [3, 0, 3];
%!
%! [nn, xx] = hist (y, 3);
%! assert (nn, n);
%! assert (xx, x, 2*eps);
%!
%! [nn, xx] = hist (y, uint8 (3));
%! assert (nn, n);
%! assert (xx, x, 2*eps);
%!
%! [nn, xx] = hist (y, single (3));
%! assert (nn, n);
%! assert (xx, single (x), 2*eps ("single"));

%!test <*53199>
%! a = [  1,  2,  3,  4, 0;
%!        5,  4,  6,  7, 8;
%!        9, 12, 11, 10, 0;
%!       13, 16, 15, 14, 0;
%!       17, 20, 19, 18, 0;
%!       21, 22, 23,  2, 0;
%!       24, 27, 26, 25, 0;
%!       28, 31, 30, 29, 0;
%!       32, 35, 34, 33, 0;
%!       36, 39, 38, 37, 0;
%!       40, 43, 42, 41, 0;
%!       44, 47, 46, 45, 0;
%!       48, 51, 50, 49, 0;
%!       52, 55, 54, 53, 0];
%! n = max (a(:));
%! [cnt1, ctr1] = hist(a(:), 1:n);
%! [cnt2, ctr2] = hist(a(:), n);
%! assert (cnt1, cnt2);
%! assert (ctr1, 1:n);
%! assert (ctr2, 0.5:n);

## Test Infinite values and calculation of bins
%!test
%! y = [-Inf, NaN, 10, Inf, 0];
%! [nn, xx] = hist (y);
%! assert (nn, [2 0 0 0 0 0 0 0 0 2]);
%! assert (xx, 0.5:10);

## Test return class of second output
%!test <*56465>
%! [nn, xx] = hist (double (1:10), single (7));
%! assert (isa (xx, "double"));
%! [nn, xx] = hist (single (1:10), double (7));
%! assert (isa (xx, "single"));
%! [nn, xx] = hist (single (1:10), double ([1, 5, 10]));
%! assert (isa (xx, "double"));
%! [nn, xx] = hist (double (1:10), single ([1, 5, 10]));
%! assert (isa (xx, "single"));

%!test <*65714> # Avoid error if diff(y) is very small.
%! a = [1, 1+eps, 1+ 15*eps];
%! hf = figure ("visible", "off");
%! unwind_protect
%!   hax = axes ("parent", hf);
%!   hist (hax, a);
%!   hp = get (hax, "children");
%!   assert (max (get (hp, "ydata")(:)), 3);
%! unwind_protect_cleanup
%!   close (hf);
%! end_unwind_protect

%!test <*65714> # Avoid error if diff(y) is very small, with specified X.
%! a = [1, 1+eps, 1+ 15*eps];
%! hf = figure ("visible", "off");
%! unwind_protect
%!   hax = axes ("parent", hf);
%!   hist (hax, a, 5);
%!   hp = get (hax, "children");
%!   assert (max (get (hp, "ydata")(:)), 3);
%! unwind_protect_cleanup
%!   close (hf);
%! end_unwind_protect


## Test input validation
%!error <Invalid call> hist ()
%!error <Y must be real-valued> hist (2+i)
%!error <bin specification must be a numeric> hist (1, {0,1,2})
%!error <number of bins NBINS must be positive> hist (1, 0)
%!test
%! hf = figure ("visible", "off");
%! hax = gca ();
%! unwind_protect
%!   fail ("hist (hax, 1, [2 1 0])", "warning", "bin values X not sorted");
%! unwind_protect_cleanup
%!   close (hf);
%! end_unwind_protect
%!error <bin specification must be a scalar or vector> hist (1, ones (2,2))
%!error <NORM must be a numeric constant> hist (1,1, {1})
%!error <NORM must be a numeric constant . 0> hist (1,1, -1)
%!error <NORM must be scalar or vector> hist (1,1, ones (4))