1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
########################################################################
##
## Copyright (C) 2009-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{vn} =} isonormals (@var{val}, @var{vert})
## @deftypefnx {} {@var{vn} =} isonormals (@var{val}, @var{hp})
## @deftypefnx {} {@var{vn} =} isonormals (@var{x}, @var{y}, @var{z}, @var{val}, @var{vert})
## @deftypefnx {} {@var{vn} =} isonormals (@var{x}, @var{y}, @var{z}, @var{val}, @var{hp})
## @deftypefnx {} {@var{vn} =} isonormals (@dots{}, "negate")
## @deftypefnx {} {} isonormals (@var{val}, @var{hp})
## @deftypefnx {} {} isonormals (@var{x}, @var{y}, @var{z}, @var{val}, @var{hp})
## @deftypefnx {} {} isonormals (@dots{}, "negate")
##
## Calculate normals to an isosurface.
##
## The vertex normals @var{vn} are calculated from the gradient of the
## 3-dimensional array @var{val} (size: lxmxn) containing the data for an
## isosurface geometry. The normals point towards smaller values in @var{val}.
##
## If called with one output argument @var{vn}, and the second input argument
## @var{vert} holds the vertices of an isosurface, then the normals @var{vn}
## are calculated at the vertices @var{vert} on a grid given by
## @code{[x, y, z] = meshgrid (1:l, 1:m, 1:n)}. The output argument
## @var{vn} has the same size as @var{vert} and can be used to set the
## @qcode{"VertexNormals"} property of the corresponding patch.
##
## If called with additional input arguments @var{x}, @var{y}, and @var{z},
## which are 3-dimensional arrays with the same size as @var{val},
## then the volume data is taken at these points. Instead of the vertex data
## @var{vert}, a patch handle @var{hp} can be passed to the function.
##
## If the last input argument is the string @qcode{"negate"}, compute the
## reverse vector normals of an isosurface geometry (i.e., pointed towards
## larger values in @var{val}).
##
## If no output argument is given, the property @qcode{"VertexNormals"} of
## the patch associated with the patch handle @var{hp} is changed directly.
##
## @seealso{isosurface, isocolors, smooth3}
## @end deftypefn
function vn = isonormals (varargin)
narg = nargin;
negate = false;
if (nargin > 2)
if (ischar (varargin{end}))
if (strcmpi (varargin{end}, "negate"))
negate = true;
narg -= 1;
else
error ("isonormals: Unknown option '%s'", varargin{end});
endif
endif
endif
switch (narg)
case 2
val = varargin{1};
vp = varargin{2};
x = 1:columns (val);
y = 1:rows (val);
z = 1:size (val, 3);
case 5
x = varargin{1};
y = varargin{2};
z = varargin{3};
val = varargin{4};
vp = varargin{5};
otherwise
print_usage ();
endswitch
if (isnumeric (vp) && columns (vp) == 3)
hp = [];
v = vp;
elseif (isgraphics (vp, "patch"))
hp = vp;
v = get (hp, "Vertices");
else
error ("isonormals: input must be a list of vertices or a patch handle");
endif
if (negate)
normals = __interp_cube__ ("isonormals", x, y, z, val, v, "normals");
else
normals = -__interp_cube__ ("isonormals", x, y, z, val, v, "normals");
endif
if (nargout == 0)
if (! isempty (hp))
set (hp, "VertexNormals", normals);
endif
else
vn = normals;
endif
endfunction
%!demo
%! function isofinish (hp)
%! axis equal;
%! set (hp, "VertexNormals", -get (hp, "VertexNormals")); # Revert normals
%! shading interp;
%! lighting gouraud;
%! set (hp, "BackFaceLighting", "lit");
%! light ();
%! endfunction
%!
%! N = 15; # Increase number of vertices in each direction
%! iso = .4; # Change isovalue to .1 to display a sphere
%! lin = linspace (0, 2, N);
%! [x, y, z] = meshgrid (lin, lin, lin);
%! val = (x-.5).^2 + (y-.5).^2 + (z-.5).^2;
%! clf;
%!
%! subplot (2,2,1);
%! view (-38, 20);
%! [fac, vert, cdat] = isosurface (x, y, z, val, iso, y);
%! hp = patch ("Faces", fac, "Vertices", vert, "FaceVertexCData", cdat);
%! title ("without isonormals");
%! isofinish (hp);
%! set (hp, "VertexNormalsMode", "auto"); # for Matlab compatibility
%!
%! subplot (2,2,2);
%! view (-38, 20);
%! hp = patch ("Faces", fac, "Vertices", vert, "FaceVertexCData", cdat);
%! title ("patch modified by isonormals");
%! isonormals (x, y, z, val, hp); # Directly modify patch
%! isofinish (hp);
%!
%! subplot (2,2,3);
%! view (-38, 20);
%! hp = patch ("Faces", fac, "Vertices", vert, "FaceVertexCData", cdat);
%! vn = isonormals (x, y, z, val, vert); # Compute normals of isosurface
%! set (hp, "VertexNormals", vn); # Manually set vertex normals
%! title ('set "VertexNormals" from isonormals');
%! isofinish (hp);
%!
%! subplot (2,2,4);
%! view (-38, 20);
%! hp = patch ("Faces", fac, "Vertices", vert, "FaceVertexCData", cdat);
%! isonormals (x, y, z, val, hp, "negate"); # Use reverse directly
%! title ('patch modified by isonormals (..., "negate")');
%! isofinish (hp);
%!shared x,y,z,val,vert
%! [x, y, z] = meshgrid (0:.5:2, 0:.5:2, 0:.5:2);
%! val = abs ((x-.5).^2 + (y-.3).^2 + (z-.4).^2);
%! [fac, vert, cdat] = isosurface (x, y, z, val, .4, y);
%!test
%! vn = isonormals (x, y, z, val, vert);
%! assert (size (vert), size (vn));
%!test
%! np = isonormals (x, y, z, val, vert);
%! nn = isonormals (x, y, z, val, vert, "negate");
%! assert (np, -nn);
%!test
%! [x,y,z] = meshgrid (-2:1:2, -2:1:2, -2:1:2);
%! val = x.^2 + y.^2 + z.^2;
%! [f,vert] = isosurface (x, y, z, val, 1);
%! vn = isonormals (x, y, z, val, vert);
%! dirn = vert ./ vn;
%! assert (all (dirn(isfinite (dirn)) <= 0));
## Test input validation
%!error <Invalid call> isonormals ()
%!error <Invalid call> isonormals (1)
%!error <Invalid call> isonormals (1,2,3)
%!error <Invalid call> isonormals (1,2,3,4)
%!error <Invalid call> isonormals (1,2,3,4,5,6)
%!error <Unknown option 'foo'> isonormals (x, y, z, val, vert, "foo")
%!error <must be a list of vertices> isonormals (1, {1})
%!error <must be a list of vertices> isonormals (1, [1 2 3 4])
%!error <must be a .* patch handle> isonormals (x, y, z, val, x)
## Test validation of private function __interp_cube__
%!error <X, Y, Z have unequal dimensions> isonormals ({x}, y, z, val, vert)
%!error <X, Y, Z have unequal dimensions> isonormals (x, {y}, z, val, vert)
%!error <X, Y, Z have unequal dimensions> isonormals (x, y, {z}, val, vert)
%!error <X, Y, Z have unequal dimensions> isonormals (x, y, z(1), val, vert)
%!error <X, Y, Z have unequal dimensions> isonormals (x(:), y(:), z, val, vert)
%!error <VAL dimensions must match those of X, Y, and Z> isonormals (1, 2, 3, val, vert)
|