1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
########################################################################
##
## Copyright (C) 2003-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} pareto (@var{y})
## @deftypefnx {} {} pareto (@var{y}, @var{x})
## @deftypefnx {} {} pareto (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} pareto (@dots{})
## Draw a Pareto chart.
##
## A Pareto chart is a bar graph that arranges information in such a way
## that priorities for process improvement can be established; It organizes
## and displays information to show the relative importance of data. The chart
## is similar to the histogram or bar chart, except that the bars are arranged
## in decreasing magnitude from left to right along the x-axis.
##
## The fundamental idea (Pareto principle) behind the use of Pareto
## diagrams is that the majority of an effect is due to a small subset of the
## causes. For quality improvement, the first few contributing causes
## (leftmost bars as presented on the diagram) to a problem usually account for
## the majority of the result. Thus, targeting these "major causes" for
## elimination results in the most cost-effective improvement scheme.
##
## Typically only the magnitude data @var{y} is present in which case
## @var{x} is taken to be the range @code{1 : length (@var{y})}. If @var{x}
## is given it may be a string array, a cell array of strings, or a numerical
## vector.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a 2-element vector with a graphics
## handle for the created bar plot and a second handle for the created line
## plot.
##
## An example of the use of @code{pareto} is
##
## @example
## @group
## Cheese = @{"Cheddar", "Swiss", "Camembert", ...
## "Munster", "Stilton", "Blue"@};
## Sold = [105, 30, 70, 10, 15, 20];
## pareto (Sold, Cheese);
## @end group
## @end example
## @seealso{bar, barh, hist, pie, plot}
## @end deftypefn
function h = pareto (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("pareto", varargin{:});
if (nargin < 1 || nargin > 2)
print_usage ();
endif
y = varargin{1}(:).';
if (nargin == 2)
x = varargin{2}(:).';
if (! iscell (x))
if (ischar (x))
x = cellstr (x);
else
x = cellstr (num2str (x(:)));
endif
endif
else
x = cellstr (int2str ([1:numel(y)]'));
endif
[y, idx] = sort (y, "descend");
x = x(idx);
cdf = cumsum (y);
maxcdf = cdf(end);
cdf ./= maxcdf;
idx95 = find (cdf < 0.95, 1, "last") + 1;
if (isempty (hax))
[ax, hbar, hline] = plotyy (1 : idx95, y(1:idx95),
1 : length (cdf), 100 * cdf,
@bar, @plot);
else
[ax, hbar, hline] = plotyy (hax, 1 : idx95, y(1:idx95),
1 : length (cdf), 100 * cdf,
@bar, @plot);
endif
axis (ax(1), [1 - 0.6, idx95 + 0.6, 0, maxcdf]);
axis (ax(2), [1 - 0.6, idx95 + 0.6, 0, 100]);
set (ax(2), "ytick", [0, 20, 40, 60, 80, 100],
"yticklabel", {"0%", "20%", "40%", "60%", "80%", "100%"},
"ycolor", get (ax(1), "ycolor"));
set (hline, "color", get (ax(1), "colororder")(1,:));
set (ax(1:2), "xtick", 1:idx95, "xticklabel", x(1:idx95));
if (nargout > 0)
h = [hbar; hline];
endif
endfunction
%!demo
%! clf;
%! colormap (jet (64));
%! Cheese = {"Cheddar", "Swiss", "Camembert", "Munster", "Stilton", "Blue"};
%! Sold = [105, 30, 70, 10, 15, 20];
%! pareto (Sold, Cheese);
%! title ("pareto() demo #1");
%!demo
%! clf;
%! ## Suppose that we want establish which products makes 80% of turnover.
%! Codes = {"AB4","BD7","CF8","CC5","AD11","BB5","BB3","AD8","DF3","DE7"};
%! Value = [2.35 7.9 2.45 1.1 0.15 13.45 5.4 2.05 0.85 1.65]';
%! SoldUnits = [54723 41114 16939 1576091 168000 687197 120222 168195, ...
%! 1084118 55576]';
%! pareto (Value.*SoldUnits, Codes);
%! title ("pareto() demo #2");
|