1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} peaks ()
## @deftypefnx {} {} peaks (@var{n})
## @deftypefnx {} {} peaks (@var{x}, @var{y})
## @deftypefnx {} {@var{z} =} peaks (@dots{})
## @deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} peaks (@dots{})
## Plot a function with lots of local maxima and minima.
##
## The function has the form
##
## @tex
## $$f(x,y) = 3 (1 - x) ^ 2 e ^ {\left(-x^2 - (y+1)^2\right)} - 10 \left({x \over 5} - x^3 - y^5\right) - {1 \over 3} e^{\left(-(x+1)^2 - y^2\right)}$$
## @end tex
## @ifnottex
## @verbatim
## f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
## - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
## - 1/3*exp(-(x+1)^2 - y^2)
## @end verbatim
## @end ifnottex
##
## Called without a return argument, @code{peaks} plots the surface of the
## above function using @code{surf}.
##
## If @var{n} is a scalar, @code{peaks} plots the value of the above
## function on an @var{n}-by-@var{n} mesh over the range [-3,3]. The
## default value for @var{n} is 49.
##
## If @var{n} is a vector, then it represents the grid values over which
## to calculate the function. If @var{x} and @var{y} are specified then
## the function value is calculated over the specified grid of vertices.
##
## When called with output arguments, return the data for the function
## evaluated over the meshgrid. This can subsequently be plotted with
## @code{surf (@var{x}, @var{y}, @var{z})}.
##
## @seealso{sombrero, meshgrid, mesh, surf}
## @end deftypefn
## Reference: Expression for peaks function was taken from the following paper:
## http://www.control.hut.fi/Kurssit/AS-74.115/Material/GENALGgoga.pdf
function [X_out, Y_out, Z_out] = peaks (x, y)
if (nargin == 0)
x = y = linspace (-3, 3, 49);
elseif (nargin == 1)
if (length (x) > 1)
y = x;
else
x = y = linspace (-3, 3, x);
endif
endif
if (isvector (x) && isvector (y))
[X, Y] = meshgrid (x, y);
else
X = x;
Y = y;
endif
Z = 3 * (1 - X) .^ 2 .* exp (- X .^ 2 - (Y + 1) .^ 2) ...
- 10 * (X / 5 - X .^ 3 - Y .^ 5) .* exp (- X .^ 2 - Y .^ 2) ...
- 1 / 3 * exp (- (X + 1) .^ 2 - Y .^ 2);
if (nargout == 0)
surf (x, y, Z);
Z_max = max (Z(:));
Z_min = min (Z(:));
axis ([-3, 3, -3, 3, Z_min, Z_max]);
elseif (nargout == 1)
X_out = Z;
else
X_out = X;
Y_out = Y;
Z_out = Z;
endif
endfunction
|