1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} quiver3 (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w})
## @deftypefnx {} {} quiver3 (@var{z}, @var{u}, @var{v}, @var{w})
## @deftypefnx {} {} quiver3 (@dots{}, @var{s})
## @deftypefnx {} {} quiver3 (@dots{}, @var{style})
## @deftypefnx {} {} quiver3 (@dots{}, "filled")
## @deftypefnx {} {} quiver3 (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} quiver3 (@dots{})
##
## Plot a 3-D vector field with arrows.
##
## Plot the (@var{u}, @var{v}, @var{w}) components of a vector field at the
## grid points defined by (@var{x}, @var{y}, @var{z}). If the grid is uniform
## then @var{x}, @var{y}, and @var{z} can be specified as grid vectors and
## @code{meshgrid} is used to create the 3-D grid.
##
## If @var{x} and @var{y} are not given they are assumed to be
## @code{(1:@var{m}, 1:@var{n})} where
## @code{[@var{m}, @var{n}] = size (@var{u})}.
##
## The optional input @var{s} is a scalar defining a scaling factor to use for
## the arrows of the field relative to the mesh spacing. A value of 1.0 will
## result in the longest vector exactly filling one grid cube. A value of 0
## or @qcode{"off"} disables all scaling. The default value is 0.9.
##
## The style to use for the plot can be defined with a line style @var{style}
## of the same format as the @code{plot} command. If a marker is specified
## then the markers are drawn at the origin of the vectors (which are the grid
## points defined by @var{x}, @var{y}, @var{z}). When a marker is specified,
## the arrowhead is not drawn. If the argument @qcode{"filled"} is given then
## the markers are filled. If name-value plot style properties are used, they
## must appear in pairs and follow any other plot style arguments.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to a quiver object.
## A quiver object regroups the components of the quiver plot (body, arrow,
## and marker), and allows them to be changed together.
##
## @example
## @group
## [x, y, z] = peaks (25);
## surf (x, y, z);
## hold on;
## [u, v, w] = surfnorm (x, y, z / 10);
## h = quiver3 (x, y, z, u, v, w);
## set (h, "maxheadsize", 0.33);
## @end group
## @end example
##
## @seealso{quiver, compass, feather, plot}
## @end deftypefn
function h = quiver3 (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("quiver3", varargin{:});
if (nargin < 4)
print_usage ();
endif
oldfig = [];
if (! isempty (hax))
oldfig = get (0, "currentfigure");
endif
unwind_protect
[hax, htmp] = __quiver__ (hax, true, varargin{:});
if (! ishold ())
set (hax, "view", [-37.5, 30],
"xgrid", "on", "ygrid", "on", "zgrid", "on");
endif
unwind_protect_cleanup
if (! isempty (oldfig))
set (0, "currentfigure", oldfig);
endif
end_unwind_protect
if (nargout > 0)
h = htmp;
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = peaks (25);
%! surf (x, y, z);
%! hold on;
%! [u, v, w] = surfnorm (x, y, z / 10);
%! h = quiver3 (x, y, z, u, v, w);
%! set (h, "maxheadsize", 0.25);
%! hold off;
%! title ("quiver3() of surface normals to peaks() function");
%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = peaks (25);
%! surf (x, y, z);
%! hold on;
%! [u, v, w] = surfnorm (x, y, z / 10);
%! h = quiver3 (x, y, z, u, v, w);
%! set (h, "maxheadsize", 0.25);
%! hold off;
%! shading interp;
%! title ({"quiver3() of surface normals to peaks() function"; ...
%! 'shading "interp"'});
## Check standard inputs, single arrow.
%!test
%! hf = figure ("visible", "off");
%! hax = gca ();
%! unwind_protect
%!
%! h = quiver3 (hax, 0, 1, 2, 3);
%! children = get (h, "children");
%! childxdata = get (children, "xdata");
%! childydata = get (children, "ydata");
%! childzdata = get (children, "zdata");
%! stemchild = find (cellfun (@numel, childxdata) == 3);
%! arrowheadchild = find (cellfun (@numel, childxdata) == 4);
%! assert (childxdata{stemchild}(1), 1, eps);
%! assert (childxdata{stemchild}(2), 1 + 1*0.9, eps);
%! assert (isnan (childxdata{stemchild}(3)));
%! assert (childxdata{arrowheadchild}(2), 1 + 1*0.9, eps);
%! assert (isnan (childxdata{arrowheadchild}(4)));
%! assert (childydata{stemchild}(1), 1, eps);
%! assert (childydata{stemchild}(2), 1 + 2*0.9, eps);
%! assert (isnan (childydata{stemchild}(3)));
%! assert (childydata{arrowheadchild}(2), 1 + 2*0.9, eps);
%! assert (isnan (childydata{arrowheadchild}(4)));
%! assert (childzdata{stemchild}(1), 0, eps);
%! assert (childzdata{stemchild}(2), 0 + 3*0.9, eps);
%! assert (isnan (childzdata{stemchild}(3)));
%! assert (childzdata{arrowheadchild}(2), 0 + 3*0.9, eps);
%! assert (isnan (childzdata{arrowheadchild}(4)));
%!
%! h = quiver3 (hax, 1, 1, 0, 1, 2, 3);
%! children = get (h, "children");
%! childxdata = get (children, "xdata");
%! childydata = get (children, "ydata");
%! childzdata = get (children, "zdata");
%! stemchild = find (cellfun (@numel, childxdata) == 3);
%! arrowheadchild = find (cellfun (@numel, childxdata) == 4);
%! assert (childxdata{stemchild}(1), 1, eps);
%! assert (childxdata{stemchild}(2), 1 + 1*0.9, eps);
%! assert (isnan (childxdata{stemchild}(3)));
%! assert (childxdata{arrowheadchild}(2), 1 + 1*0.9, eps);
%! assert (isnan (childxdata{arrowheadchild}(4)));
%! assert (childydata{stemchild}(1), 1, eps);
%! assert (childydata{stemchild}(2), 1 + 2*0.9, eps);
%! assert (isnan (childydata{stemchild}(3)));
%! assert (childydata{arrowheadchild}(2), 1 + 2*0.9, eps);
%! assert (isnan (childydata{arrowheadchild}(4)));
%! assert (childzdata{stemchild}(1), 0, eps);
%! assert (childzdata{stemchild}(2), 0 + 3*0.9, eps);
%! assert (isnan (childzdata{stemchild}(3)));
%! assert (childzdata{arrowheadchild}(2), 0 + 3*0.9, eps);
%! assert (isnan (childzdata{arrowheadchild}(4)));
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
## Check standard inputs, multiple arrows.
%!test
%! hf = figure ("visible", "off");
%! hax = gca ();
%! unwind_protect
%!
%! a = reshape(1:12,2,3,2);
%! x = 1:3; y = 1:2; z = 1:2;
%! [xx,yy,zz] = meshgrid (x,y,z);
%! numpts = 12;
%! sf= sqrt(sumsq([1/3 1/2 11/6])/432); # Actual internal scale factor, z=a.
%! sf2= sqrt(sumsq([1/3 1/2 1/6])/432); # z vector internal scale factor.
%!
%! h = quiver3 (hax, a, a, a, a, 1); # No x,y input.
%! children = get (h, "children");
%! childxdata = get (children, "xdata");
%! childydata = get (children, "ydata");
%! childzdata = get (children, "zdata");
%! basechild = find (cellfun (@numel, childxdata) == numpts);
%! stemchild = find (cellfun (@numel, childxdata) == numpts*3);
%! arrowheadchild = find (cellfun (@numel, childxdata) == numpts*4);
%! ## Check all bases.
%! assert (childxdata{basechild}, [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3]);
%! assert (childydata{basechild}, [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]);
%! assert (childzdata{basechild}, [1:12]);
%! ## Check first arrow.
%! assert (childxdata{stemchild}(1), 1, eps);
%! assert (childxdata{stemchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childxdata{stemchild}(3)));
%! assert (childxdata{arrowheadchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childxdata{arrowheadchild}(4)));
%! assert (childydata{stemchild}(1), 1, eps);
%! assert (childydata{stemchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childydata{stemchild}(3)));
%! assert (childydata{arrowheadchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childydata{arrowheadchild}(4)));
%! assert (childzdata{stemchild}(1), 1, eps);
%! assert (childzdata{stemchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childzdata{stemchild}(3)));
%! assert (childzdata{arrowheadchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childzdata{arrowheadchild}(4)));
%! ## Check last arrow.
%! assert (childxdata{stemchild}(numpts*3-2), 3, eps);
%! assert (childxdata{stemchild}(numpts*3-1), 3 + 12*sf, eps);
%! assert (isnan (childxdata{stemchild}(end)));
%! assert (childxdata{arrowheadchild}(numpts*4-2), 3 + 12*sf, eps);
%! assert (isnan (childxdata{arrowheadchild}(end)));
%! assert (childydata{stemchild}(numpts*3-2), 2, eps);
%! assert (childydata{stemchild}(numpts*3-1), 2 + 12*sf, eps);
%! assert (isnan (childydata{stemchild}(end)));
%! assert (childydata{arrowheadchild}(numpts*4-2), 2 + 12*sf, eps);
%! assert (isnan (childydata{arrowheadchild}(end)));
%! assert (childzdata{stemchild}(numpts*3-2), 12, eps);
%! assert (childzdata{stemchild}(numpts*3-1), 12 + 12*sf, eps);
%! assert (isnan (childzdata{stemchild}(end)));
%! assert (childzdata{arrowheadchild}(numpts*4-2), 12 + 12*sf, eps);
%! assert (isnan (childzdata{arrowheadchild}(end)));
%!
%! h = quiver3 (hax, xx, yy, a, a, a, a, 1); # x,y input as matrices.
%! children = get (h, "children");
%! childxdata = get (children, "xdata");
%! childydata = get (children, "ydata");
%! childzdata = get (children, "zdata");
%! basechild = find (cellfun (@numel, childxdata) == numpts);
%! stemchild = find (cellfun (@numel, childxdata) == numpts*3);
%! arrowheadchild = find (cellfun (@numel, childxdata) == numpts*4);
%! ## Check all bases.
%! assert (childxdata{basechild}, [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3]);
%! assert (childydata{basechild}, [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]);
%! assert (childzdata{basechild}, [1:12]);
%! ## Check first arrow.
%! assert (childxdata{stemchild}(1), 1, eps);
%! assert (childxdata{stemchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childxdata{stemchild}(3)));
%! assert (childxdata{arrowheadchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childxdata{arrowheadchild}(4)));
%! assert (childydata{stemchild}(1), 1, eps);
%! assert (childydata{stemchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childydata{stemchild}(3)));
%! assert (childydata{arrowheadchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childydata{arrowheadchild}(4)));
%! assert (childzdata{stemchild}(1), 1, eps);
%! assert (childzdata{stemchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childzdata{stemchild}(3)));
%! assert (childzdata{arrowheadchild}(2), 1 + 1*sf, eps);
%! assert (isnan (childzdata{arrowheadchild}(4)));
%! ## Check last arrow.
%! assert (childxdata{stemchild}(numpts*3-2), 3, eps);
%! assert (childxdata{stemchild}(numpts*3-1), 3 + 12*sf, eps);
%! assert (isnan (childxdata{stemchild}(end)));
%! assert (childxdata{arrowheadchild}(numpts*4-2), 3 + 12*sf, eps);
%! assert (isnan (childxdata{arrowheadchild}(end)));
%! assert (childydata{stemchild}(numpts*3-2), 2, eps);
%! assert (childydata{stemchild}(numpts*3-1), 2 + 12*sf, eps);
%! assert (isnan (childydata{stemchild}(end)));
%! assert (childydata{arrowheadchild}(numpts*4-2), 2 + 12*sf, eps);
%! assert (isnan (childydata{arrowheadchild}(end)));
%! assert (childzdata{stemchild}(numpts*3-2), 12, eps);
%! assert (childzdata{stemchild}(numpts*3-1), 12 + 12*sf, eps);
%! assert (isnan (childzdata{stemchild}(end)));
%! assert (childzdata{arrowheadchild}(numpts*4-2), 12 + 12*sf, eps);
%! assert (isnan (childzdata{arrowheadchild}(end)));
%!
%! h = quiver3 (hax, x, y, z, a, a, a, 1); # x,y z input as vectors.
%! children = get (h, "children");
%! childxdata = get (children, "xdata");
%! childydata = get (children, "ydata");
%! childzdata = get (children, "zdata");
%! basechild = find (cellfun (@numel, childxdata) == numpts);
%! stemchild = find (cellfun (@numel, childxdata) == numpts*3);
%! arrowheadchild = find (cellfun (@numel, childxdata) == numpts*4);
%! ## Check all bases.
%! assert (childxdata{basechild}, [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3]);
%! assert (childydata{basechild}, [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]);
%! assert (childzdata{basechild}, [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]);
%! ## Check first arrow.
%! assert (childxdata{stemchild}(1), 1, eps);
%! assert (childxdata{stemchild}(2), 1 + 1*sf2, eps);
%! assert (isnan (childxdata{stemchild}(3)));
%! assert (childxdata{arrowheadchild}(2), 1 + 1*sf2, eps);
%! assert (isnan (childxdata{arrowheadchild}(4)));
%! assert (childydata{stemchild}(1), 1, eps);
%! assert (childydata{stemchild}(2), 1 + 1*sf2, eps);
%! assert (isnan (childydata{stemchild}(3)));
%! assert (childydata{arrowheadchild}(2), 1 + 1*sf2, eps);
%! assert (isnan (childydata{arrowheadchild}(4)));
%! assert (childzdata{stemchild}(1), 1, eps);
%! assert (childzdata{stemchild}(2), 1 + 1*sf2, eps);
%! assert (isnan (childzdata{stemchild}(3)));
%! assert (childzdata{arrowheadchild}(2), 1 + 1*sf2, eps);
%! assert (isnan (childzdata{arrowheadchild}(4)));
%! ## Check last arrow.
%! assert (childxdata{stemchild}(numpts*3-2), 3, eps);
%! assert (childxdata{stemchild}(numpts*3-1), 3 + 12*sf2, eps);
%! assert (isnan (childxdata{stemchild}(end)));
%! assert (childxdata{arrowheadchild}(numpts*4-2), 3 + 12*sf2, eps);
%! assert (isnan (childxdata{arrowheadchild}(end)));
%! assert (childydata{stemchild}(numpts*3-2), 2, eps);
%! assert (childydata{stemchild}(numpts*3-1), 2 + 12*sf2, eps);
%! assert (isnan (childydata{stemchild}(end)));
%! assert (childydata{arrowheadchild}(numpts*4-2), 2 + 12*sf2, eps);
%! assert (isnan (childydata{arrowheadchild}(end)));
%! assert (childzdata{stemchild}(numpts*3-2), 2, eps);
%! assert (childzdata{stemchild}(numpts*3-1), 2 + 12*sf2, eps);
%! assert (isnan (childzdata{stemchild}(end)));
%! assert (childzdata{arrowheadchild}(numpts*4-2), 2 + 12*sf2, eps);
%! assert (isnan (childzdata{arrowheadchild}(end)));
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
##Test input validation
%!error <Invalid call> quiver3 ()
%!error <Invalid call> quiver3 (1.1)
%!error <Invalid call> quiver3 (1.1, 2)
%!error <Invalid call> quiver3 (1.1, 2, 3)
%!error <Invalid call> quiver3 (1.1, 2, 3, "foo")
%!error <Invalid call> quiver3 (1.1, 2, 3, 4, 5, 6, 7, 8, "foo")
%!error <U, V, and W must be the same> quiver3 (30, [40 50], 60, 70)
%!error <Z vector length must equal size of> quiver3 ([30 40], eye(3), eye(3), eye(3))
%!error <Z, U, V, and W must be the same> quiver3 ([30 40], 50, 60, 70)
%!error <Z, U, V, and W must be the same> quiver3 (eye(2), eye(3), eye(2), eye(2))
%!error <Z, U, V, and W must be the same> quiver3 (eye(2), eye(2), eye(3), eye(2))
%!error <Z, U, V, and W must be the same> quiver3 (eye(2), eye(2), eye(2), eye(3))
%!error <U, V, and W must be the same size> quiver3 ([1:2], [1:2], 1, eye(3), eye(2), eye(2))
%!error <U, V, and W must be the same size> quiver3 ([1:2], [1:2], 1, eye(2), eye(3), eye(2))
%!error <U, V, and W must be the same size> quiver3 ([1:2], [1:2], 1, eye(2), eye(2), eye(3))
%!error <X vector length must equal number of> quiver3 ([1:3], [1:2], 1, eye(2), eye(2), eye(2))
%!error <Y vector length must equal number of> quiver3 ([1:2], [1:3], 1, eye(2), eye(2), eye(2))
%!error <Z vector length must equal size of> quiver3 ([1:2], [1:2], [1:2], eye(2), eye(2), eye(2))
%!error <X, Y, Z, U, V, and W must be the same size> quiver3 (eye(3), eye(2), eye(2), eye(2), eye(2), eye(2))
%!error <X, Y, Z, U, V, and W must be the same size> quiver3 (eye(2), eye(3), eye(2), eye(2), eye(2), eye(2))
%!error <X, Y, Z, U, V, and W must be the same size> quiver3 (eye(2), eye(2), eye(3), eye(2), eye(2), eye(2))
%!error <X, Y, Z, U, V, and W must be the same size> quiver3 (eye(2), eye(2), eye(2), eye(3), eye(2), eye(2))
%!error <X, Y, Z, U, V, and W must be the same size> quiver3 (eye(2), eye(2), eye(2), eye(2), eye(3), eye(2))
%!error <X, Y, Z, U, V, and W must be the same size> quiver3 (eye(2), eye(2), eye(2), eye(2), eye(2), eye(3))
%!error <scaling factor must be> quiver3 (10, 20, 30, 40, -5)
%!error <scaling factor must be> quiver3 (10, 20, 30, 40, [1 2])
%!error <scaling factor must be> quiver3 (10, 20, 30, 40, 50, 60, -5)
%!error <scaling factor must be> quiver3 (10, 20, 30, 40, 50, 60, [1 2])
|