1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
########################################################################
##
## Copyright (C) 2019-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{xyz} =} stream3 (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {@var{xyz} =} stream3 (@var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {@var{xyz} =} stream3 (@dots{}, @var{options})
## Compute 3-D streamline data.
##
## Calculate streamlines of a vector field given by @code{[@var{u}, @var{v},
## @var{w}]}. The vector field is defined over a rectangular grid given by
## @code{[@var{x}, @var{y}, @var{z}]}. The streamlines start at the seed
## points @code{[@var{sx}, @var{sy}, @var{sz}]}. The returned value @var{xyz}
## contains a cell array of vertex arrays. If the starting point is outside
## the vector field, @code{[]} is returned.
##
## The input parameter @var{options} is a 2-D vector of the form
## @code{[@var{stepsize}, @var{max_vertices}]}. The first parameter
## specifies the step size used for trajectory integration (default 0.1). A
## negative value is allowed which will reverse the direction of integration.
## The second parameter specifies the maximum number of segments used to
## create a streamline (default 10,000).
##
## The return value @var{xyz} is a @nospell{nverts x 3} matrix containing the
## coordinates of the field line segments.
##
## Example:
##
## @example
## @group
## [x, y, z] = meshgrid (0:3);
## u = 2 * x;
## v = y;
## w = 3 * z;
## xyz = stream3 (x, y, z, u, v, w, 1.0, 0.5, 0.0);
## @end group
## @end example
##
## @seealso{stream2, streamline, streamribbon, streamtube, ostreamtube}
## @end deftypefn
## References:
##
## @article{
## title = {Particle Tracing Algorithms for 3D Curvilinear Grids},
## year = {2000},
## author = {Nielson, Gregory and Uller, H. and Sadarjoen, I. and Walsum, Theo and Hin, Andrea and Post, Frits}
## }
##
## @article{
## title = {Sources of error in the graphical analysis of CFD results},
## publisher = {Journal of Scientific Computing},
## year = {1988},
## volume = {3},
## number = {2},
## pages = {149--164},
## author = {Buning, Pieter G.},
## }
function xyz = stream3 (varargin)
options = [];
switch (numel (varargin))
case {6,7}
if (numel (varargin) == 6)
[u, v, w, spx, spy, spz] = varargin{:};
else
[u, v, w, spx, spy, spz, options] = varargin{:};
endif
[m, n, p] = size (u);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
case 9
[x, y, z, u, v, w, spx, spy, spz] = varargin{:};
case 10
[x, y, z, u, v, w, spx, spy, spz, options] = varargin{:};
otherwise
print_usage ();
endswitch
stepsize = 0.1;
max_vertices = 10_000;
if (! isempty (options))
switch (numel (options))
case 1
stepsize = options(1);
case 2
stepsize = options(1);
max_vertices = options(2);
otherwise
error ("stream3: OPTIONS must be a 1- or 2-element vector");
endswitch
if (! isreal (stepsize) || stepsize == 0)
error ("stream2: STEPSIZE must be a real scalar != 0");
endif
if (! isreal (max_vertices) || max_vertices < 1)
error ("stream2: MAX_VERTICES must be an integer > 0");
endif
max_vertices = fix (max_vertices);
endif
if (! (size_equal (u, v, w, x, y, z) && size_equal (spx, spy, spz)))
error ("stream3: matrix dimensions must match");
endif
if (iscomplex (u) || iscomplex (v) || iscomplex (w)
|| iscomplex (x) || iscomplex (y) || iscomplex (z)
|| iscomplex (spx) || iscomplex (spy) || iscomplex (spz))
error ("stream3: all inputs must be real-valued");
endif
gx = x(1, :, 1);
gy = y(:, 1, 1).';
tmp = z(1, 1, :);
gz = tmp(:).';
## Jacobian Matrix
dx = diff (gx);
dy = diff (gy);
dz = diff (gz);
## "<" used to check if the mesh is ascending
if (any (dx <= 0) || any (dy <= 0) || any (dz <= 0)
|| any (isnan (dx)) || any (isnan (dy)) || any (isnan (dz)))
error ("stream3: non-monotonically increasing or NaN values found in mesh");
endif
tx = 1 ./ dx;
ty = 1 ./ dy;
tz = 1 ./ dz;
## "Don't cares" used for handling points located on the border
tx(end + 1) = 0;
ty(end + 1) = 0;
tz(end + 1) = 0;
dx(end + 1) = 0;
dy(end + 1) = 0;
dz(end + 1) = 0;
px = spx(:);
py = spy(:);
pz = spz(:);
for nseed = 1 : numel (px)
xp = px(nseed);
yp = py(nseed);
zp = pz(nseed);
idx = find (diff (gx <= xp), 1);
if (gx(end) == xp)
idx = numel (gx);
endif
idy = find (diff (gy <= yp), 1);
if (gy(end) == yp)
idy = numel (gy);
endif
idz = find (diff (gz <= zp), 1);
if (gz(end) == zp)
idz = numel (gz);
endif
if (isempty (idx) || isempty (idy) || isempty (idz))
xyz{nseed} = [];
else
## Transform seed from P coordinates to C coordinates
zeta = (idx - 1) + (xp - gx(idx)) * tx(idx);
xi = (idy - 1) + (yp - gy(idy)) * ty(idy);
rho = (idz - 1) + (zp - gz(idz)) * tz(idz);
C = __streameuler3d__ (u, v, w, tx, ty, tz, zeta, xi, rho, ...
stepsize, max_vertices);
## Transform from C coordinates to P coordinates
idu = floor (C(:, 1));
idv = floor (C(:, 2));
idw = floor (C(:, 3));
xyz{nseed} = [gx(idu + 1).' + (C(:, 1) - idu).*(dx(idu + 1).'), ...
gy(idv + 1).' + (C(:, 2) - idv).*(dy(idv + 1).'), ...
gz(idw + 1).' + (C(:, 3) - idw).*(dz(idw + 1).')];
endif
endfor
endfunction
%!demo
%! clf;
%! [x, y, z] = meshgrid (-30:1:30, -30:1:30, 0:1:50);
%! s = 10;
%! b = 8 / 3;
%! r = 28;
%! u = s * (y - x);
%! v = r * x - y - x.*z;
%! w = x.*y - b * z;
%! hold on;
%! sx = 0.1;
%! sy = 0.1;
%! sz = 0.1;
%! plot3 (sx, sy, sz, ".r", "markersize", 15);
%! h = streamline (x, y, z, u, v, w, sx, sy, sz, [0.1, 50000]);
%! set (h, "color", "r");
%! view (3);
%! title ("Lorenz System");
%! grid on;
%! axis equal;
%!test
%! [u, v, w] = meshgrid (0:3, 0:3, 0:3);
%! xyz = stream3 (u, v, w, 2, 2, 2, [0.01,5]);
%! assert (numel (xyz{:}), 15);
## Test input validation
%!error <Invalid call> stream3 ()
%!error <Invalid call> stream3 (1)
%!error <Invalid call> stream3 (1,2)
%!error <Invalid call> stream3 (1,2,3)
%!error <Invalid call> stream3 (1,2,3,4)
%!error <Invalid call> stream3 (1,2,3,4,5)
%!error <Invalid call> stream3 (1,2,3,4,5,6,7,8)
%!error <OPTIONS must be a 1- or 2-element> stream3 (1,2,3,4,5,6, [1,2,3])
%!error <STEPSIZE must be a real scalar != 0> stream3 (1,2,3,4,5,6, [1i])
%!error <STEPSIZE must be a real scalar != 0> stream3 (1,2,3,4,5,6, [0])
%!error <MAX_VERTICES must be an integer> stream3 (1,2,3,4,5,6, [1, 1i])
%!error <MAX_VERTICES must be an integer> stream3 (1,2,3,4,5,6, [1, 0])
%!error <matrix dimensions must match> stream3 ([1 1],2,3,4,5,6)
%!error <matrix dimensions must match> stream3 (1,[2 2],3,4,5,6)
%!error <matrix dimensions must match> stream3 (1,2,[3 3],4,5,6)
%!error <matrix dimensions must match> stream3 (1,2,3,[4 4],5,6)
%!error <matrix dimensions must match> stream3 (1,2,3,4,[5 5],6)
%!error <matrix dimensions must match> stream3 (1,2,3,4,5,[6 6])
%!error <all inputs must be real-valued> stream3 (1i,2,3,4,5,6)
%!error <all inputs must be real-valued> stream3 (1,2i,3,4,5,6)
%!error <all inputs must be real-valued> stream3 (1,2,3i,4,5,6)
%!error <all inputs must be real-valued> stream3 (1,2,3,4i,5,6)
%!error <all inputs must be real-valued> stream3 (1,2,3,4,5i,6)
%!error <all inputs must be real-valued> stream3 (1,2,3,4,5,6i)
%!error <non-monotonically increasing or NaN values found in mesh>
%! stream3 ([2 1], [1 2], [3 3], [4 4], [5 5], [6 6], [7 7], [8 8], [9 9]);
%!error <non-monotonically increasing or NaN values found in mesh>
%! stream3 ([1 NaN], [1 2], [3 3], [4 4], [5 5], [6 6], [7 7], [8 8], [9 9]);
## FIXME: vectors representing x, y, z mesh are not accepted.
%#!error <non-monotonically increasing or NaN values found in mesh>
%! stream3 ([1 2], [2 1], [3 3], [4 4], [5 5], [6 6], [7 7], [8 8], [9 9]);
%#!error <non-monotonically increasing or NaN values found in mesh>
%! stream3 ([1 2], [1 NaN], [3 3], [4 4], [5 5], [6 6], [7 7], [8 8], [9 9]);
%#!error <non-monotonically increasing or NaN values found in mesh>
%! stream3 ([1 2], [1 2], [2 1], [4 4], [5 5], [6 6], [7 7], [8 8], [9 9]);
%#!error <non-monotonically increasing or NaN values found in mesh>
%! stream3 ([1 2], [1 2], [1 NaN], [4 4], [5 5], [6 6], [7 7], [8 8], [9 9]);
|