1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
########################################################################
##
## Copyright (C) 2019-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} streamline (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} streamline (@var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} streamline (@dots{}, @var{options})
## @deftypefnx {} {} streamline (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} streamline (@dots{})
## Plot streamlines of 2-D or 3-D vector fields.
##
## Plot streamlines of a 2-D or 3-D vector field given by
## @code{[@var{u}, @var{v}]} or @code{[@var{u}, @var{v}, @var{w}]}. The vector
## field is defined over a rectangular grid given by @code{[@var{x}, @var{y}]}
## or @code{[@var{x}, @var{y}, @var{z}]}. The streamlines start at the seed
## points @code{[@var{sx}, @var{sy}]} or @code{[@var{sx}, @var{sy}, @var{sz}]}.
##
## The input parameter @var{options} is a 2-D vector of the form
## @code{[@var{stepsize}, @var{max_vertices}]}. The first parameter
## specifies the step size used for trajectory integration (default 0.1). A
## negative value is allowed which will reverse the direction of integration.
## The second parameter specifies the maximum number of segments used to
## create a streamline (default 10,000).
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the hggroup
## comprising the field lines.
##
## Example:
##
## @example
## @group
## [x, y] = meshgrid (-1.5:0.2:2, -1:0.2:2);
## u = - x / 4 - y;
## v = x - y / 4;
## streamline (x, y, u, v, 1.7, 1.5);
## @end group
## @end example
##
## @seealso{stream2, stream3, streamribbon, streamtube, ostreamtube}
## @end deftypefn
function h = streamline (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("streamline", varargin{:});
if (nargin == 0)
print_usage ();
endif
nd = ndims (varargin{1});
if (nd > 3)
error ("streamline: input data must be 2-D or 3-D");
endif
if (isempty (hax))
hax = gca ();
else
hax = hax(1);
endif
h = [];
if (nd == 2)
xy = stream2 (varargin{:});
for i = 1 : length (xy)
sl = xy{i};
if (! isempty (sl))
htmp = line (hax, "xdata", sl(:, 1), "ydata", sl(:, 2), "color", "b");
h = [h; htmp];
endif
endfor
else
xyz = stream3 (varargin{:});
for i = 1 : length (xyz)
sl = xyz{i};
if (! isempty (sl))
htmp = line (hax,
"xdata", sl(:, 1), "ydata", sl(:, 2), "zdata", sl(:, 3),
"color", "b");
h = [h; htmp];
endif
endfor
endif
endfunction
%!demo
%! clf;
%! [x, y] = meshgrid (-2:0.5:2);
%! u = - y - x / 2;
%! v = x - y / 2;
%! [sx, sy] = meshgrid (-2:2:2);
%! h = streamline (x, y, u, v, sx, sy);
%! set (h, "color", "r");
%! hold on;
%! quiver (x, y, u, v);
%! scatter (sx(:), sy(:), 20, "filled", "o", "markerfacecolor", "r");
%! title ("Spiral Sink");
%! grid on;
%! axis equal;
%!demo
%! clf;
%! [x, y, z] = meshgrid (-3:3);
%! u = - x / 2 - y;
%! v = x - y / 2;
%! w = - z;
%! [sx, sy, sz] = meshgrid (3, 0:1.5:1.5, 0:1.5:3);
%! h = streamline (x, y, z, u, v, w, sx, sy, sz);
%! set (h, "color", "r");
%! hold on;
%! quiver3 (x, y, z, u, v, w);
%! scatter3 (sx(:), sy(:), sz(:), 20, "filled", "o", "markerfacecolor", "r");
%! view (3);
%! title ("Spiral Sink");
%! grid on;
%! axis equal;
%!demo
%! clf;
%! [x, y, z] = meshgrid (-1:0.4:1, -1:0.4:1, -3:0.3:0);
%! a = 0.08;
%! b = 0.04;
%! u = - a * x - y;
%! v = x - a * y;
%! w = - b * ones (size (x));
%! hold on;
%! sx = 1.0;
%! sy = 0.0;
%! sz = 0.0;
%! plot3 (sx, sy, sz, ".r", "markersize", 15);
%! t = linspace (0, 12 * 2 * pi (), 500);
%! tx = exp (-a * t).*cos (t);
%! ty = exp (-a * t).*sin (t);
%! tz = - b * t;
%! plot3 (tx, ty, tz, "-b");
%! h = streamline (x, y, z, u, v, w, sx, sy, sz);
%! set (h, "color", "r");
%! view (3);
%! title ("Heuns Scheme (red) vs. Analytical Solution (blue)");
%! grid on;
%! axis equal tight;
## Test input validation
%!error <Invalid call> streamline ()
%!error <Invalid call to streamline>
%! hf = figure ("visible", "off");
%! unwind_protect
%! hax = axes ();
%! streamline (hax);
%! unwind_protect_cleanup
%! close (hf);
%! end_unwind_protect
%!error <input data must be 2-D or 3-D> streamline (ones (2,2,2,2))
|