1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
########################################################################
##
## Copyright (C) 2020-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} streamribbon (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} streamribbon (@var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} streamribbon (@var{xyz}, @var{x}, @var{y}, @var{z}, @var{anlr_spd}, @var{lin_spd})
## @deftypefnx {} {} streamribbon (@var{xyz}, @var{anlr_spd}, @var{lin_spd})
## @deftypefnx {} {} streamribbon (@var{xyz}, @var{anlr_rot})
## @deftypefnx {} {} streamribbon (@dots{}, @var{width})
## @deftypefnx {} {} streamribbon (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} streamribbon (@dots{})
## Calculate and display streamribbons.
##
## The streamribbon is constructed by rotating a normal vector around a
## streamline according to the angular rotation of the vector field.
##
## The vector field is given by @code{[@var{u}, @var{v}, @var{w}]} and is
## defined over a rectangular grid given by @code{[@var{x}, @var{y}, @var{z}]}.
## The streamribbons start at the seed points
## @code{[@var{sx}, @var{sy}, @var{sz}]}.
##
## @code{streamribbon} can be called with a cell array that contains
## pre-computed streamline data. To do this, @var{xyz} must be created with
## the @code{stream3} function. @var{lin_spd} is the linear speed of the
## vector field and can be calculated from @code{[@var{u}, @var{v}, @var{w}]}
## by the square root of the sum of the squares. The angular speed
## @var{anlr_spd} is the projection of the angular velocity onto the velocity
## of the normalized vector field and can be calculated with the @code{curl}
## command. This option is useful if you need to alter the integrator step
## size or the maximum number of streamline vertices.
##
## Alternatively, ribbons can be created from an array of vertices @var{xyz} of
## a path curve. @var{anlr_rot} contains the angles of rotation around the
## edges between adjacent vertices of the path curve.
##
## The input parameter @var{width} sets the width of the streamribbons.
##
## Streamribbons are colored according to the total angle of rotation along the
## ribbon.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the plot objects
## created for each streamribbon.
##
## Example:
##
## @example
## @group
## [x, y, z] = meshgrid (0:0.2:4, -1:0.2:1, -1:0.2:1);
## u = - x + 10;
## v = 10 * z.*x;
## w = - 10 * y.*x;
## streamribbon (x, y, z, u, v, w, [0, 0], [0, 0.6], [0, 0]);
## view (3);
## @end group
## @end example
##
## @seealso{streamline, stream3, streamtube, ostreamtube}
##
## @end deftypefn
## References:
##
## @inproceedings{
## title = {Feature Detection from Vector Quantities in a Numerically Simulated Hypersonic Flow Field in Combination with Experimental Flow Visualization},
## author = {Pagendarm, Hans-Georg and Walter, Birgit},
## year = {1994},
## publisher = {IEEE Computer Society Press},
## booktitle = {Proceedings of the Conference on Visualization ’94},
## pages = {117–123},
## }
##
## @article{
## title = {Efficient streamline, streamribbon, and streamtube constructions on unstructured grids},
## author = {Ueng, Shyh-Kuang and Sikorski, C. and Ma, Kwan-Liu},
## year = {1996},
## month = {June},
## publisher = {IEEE Transactions on Visualization and Computer Graphics},
## }
##
## @inproceedings{
## title = {Visualization of 3-D vector fields - Variations on a stream},
## author = {Dave Darmofal and Robert Haimes},
## year = {1992}
## }
##
## @techreport{
## title = {Parallel Transport Approach to Curve Framing},
## author = {Andrew J. Hanson and Hui Ma},
## year = {1995}
## }
##
## @article{
## title = {There is More than One Way to Frame a Curve},
## author = {Bishop, Richard},
## year = {1975},
## month = {03},
## volume = {82},
## publisher = {The American Mathematical Monthly}
## }
function h = streamribbon (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("streamribbon", varargin{:});
width = [];
xyz = [];
anlr_spd = [];
lin_spd = [];
anlr_rot = [];
switch (nargin)
case 2
[xyz, anlr_rot] = varargin{:};
case 3
if (numel (varargin{3}) == 1)
[xyz, anlr_rot, width] = varargin{:};
else
[xyz, anlr_spd, lin_spd] = varargin{:};
[m, n, p] = size (anlr_spd);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
endif
case 4
[xyz, anlr_spd, lin_spd, width] = varargin{:};
[m, n, p] = size (anlr_spd);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
case 6
if (iscell (varargin{1}))
[xyz, x, y, z, anlr_spd, lin_spd] = varargin{:};
else
[u, v, w, spx, spy, spz] = varargin{:};
[m, n, p] = size (u);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
endif
case 7
if (iscell (varargin{1}))
[xyz, x, y, z, anlr_spd, lin_spd, width] = varargin{:};
else
[u, v, w, spx, spy, spz, width] = varargin{:};
[m, n, p] = size (u);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
endif
case 9
[x, y, z, u, v, w, spx, spy, spz] = varargin{:};
case 10
[x, y, z, u, v, w, spx, spy, spz, width] = varargin{:};
otherwise
print_usage ();
endswitch
if (isempty (xyz))
xyz = stream3 (x, y, z, u, v, w, spx, spy, spz);
anlr_spd = curl (x, y, z, u, v, w);
lin_spd = sqrt (u.*u + v.*v + w.*w);
endif
## Derive scale factor from the bounding box diagonal
if (isempty (width))
mxx = mnx = mxy = mny = mxz = mnz = [];
j = 1;
for i = 1 : length (xyz)
sl = xyz{i};
if (! isempty (sl))
slx = sl(:,1); sly = sl(:,2); slz = sl(:,3);
mxx(j) = max (slx); mnx(j) = min (slx);
mxy(j) = max (sly); mny(j) = min (sly);
mxz(j) = max (slz); mnz(j) = min (slz);
j += 1;
endif
endfor
dx = max (mxx) - min (mnx);
dy = max (mxy) - min (mny);
dz = max (mxz) - min (mnz);
width = sqrt (dx*dx + dy*dy + dz*dz) / 25;
elseif (! isreal (width) || width <= 0)
error ("streamribbon: WIDTH must be a real scalar > 0");
endif
if (! isempty (anlr_rot))
for i = 1 : length (xyz)
if (rows (anlr_rot{i}) != rows (xyz{i}))
error ("streamribbon: ANLR_ROT must have same length as XYZ");
endif
endfor
endif
if (isempty (hax))
hax = gca ();
else
hax = hax(1);
endif
## Angular speed of a paddle wheel spinning around a streamline in a fluid
## flow "V":
## dtheta/dt = 0.5 * <curl(V), V/norm(V)>
##
## Integration along a streamline segment with the length "h" yields the
## rotation angle:
## theta = 0.25 * h * <curl(V), V(0)/norm(V(0))^2) + V(h)/norm(V(h))^2)>
##
## Alternative approach using the curl angular speed "c = curl()":
## theta = 0.5 * h * (c(0)/norm(V(0)) + c(h)/norm(V(h)))
##
## Hints:
## i. ) For integration use trapezoidal rule
## ii.) "V" can be assumend to be piecewise linear and curl(V) to be
## piecewise constant because of the used linear interpolation
h = [];
for i = 1 : length (xyz)
sl = xyz{i};
num_vertices = rows (sl);
if (! isempty (sl) && num_vertices > 1)
if (isempty (anlr_rot))
## Plot from vector field
## Interpolate onto streamline vertices
[lin_spd_sl, anlr_spd_sl, max_vertices] = ...
interp_sl (x, y, z, lin_spd, anlr_spd, sl);
if (max_vertices > 1)
## Euclidean distance between two adjacent vertices
stepsize = vecnorm (diff (sl(1:max_vertices, :)), 2, 2);
## Angular rotation around edges between two adjacent sl-vertices
## Note: Potential "division by zero" is checked in interp_sl()
anlr_rot_sl = 0.5 * stepsize.*(anlr_spd_sl(1:max_vertices - 1)./ ...
lin_spd_sl(1:max_vertices - 1) + ...
anlr_spd_sl(2:max_vertices)./ ...
lin_spd_sl(2:max_vertices));
htmp = plotribbon (hax, sl, anlr_rot_sl, max_vertices, 0.5 * width);
h = [h; htmp];
endif
else
## Plot from vertice array
anlr_rot_sl = anlr_rot{i};
htmp = plotribbon (hax, sl, anlr_rot_sl, num_vertices, 0.5 * width);
h = [h; htmp];
endif
endif
endfor
endfunction
function h = plotribbon (hax, sl, anlr_rot_sl, max_vertices, width2)
total_angle = cumsum (anlr_rot_sl);
total_angle = [0; total_angle];
## 1st streamline segment
X0 = sl(1,:);
X1 = sl(2,:);
R = X1 - X0;
RE = R / norm (R);
## Initial vector KE which is to be transported along the vertice array
KE = get_normal2 (RE);
XS10 = - width2 * KE + X0;
XS20 = width2 * KE + X0;
## Apply angular rotation
cp = cos (anlr_rot_sl(1));
sp = sin (anlr_rot_sl(1));
KE = rotation (KE, RE, cp, sp).';
XS1 = - width2 * KE + X1;
XS2 = width2 * KE + X1;
px = zeros (2, max_vertices);
py = zeros (2, max_vertices);
pz = zeros (2, max_vertices);
pc = zeros (2, max_vertices);
px(:,1) = [XS10(1); XS20(1)];
py(:,1) = [XS10(2); XS20(2)];
pz(:,1) = [XS10(3); XS20(3)];
pc(:,1) = total_angle(1) * [1; 1];
px(:,2) = [XS1(1); XS2(1)];
py(:,2) = [XS1(2); XS2(2)];
pz(:,2) = [XS1(3); XS2(3)];
pc(:,2) = total_angle(2) * [1; 1];
for i = 3 : max_vertices
## Next streamline segment
X0 = X1;
X1 = sl(i,:);
R = X1 - X0;
RE = R / norm (R);
## Project KE onto RE and get the difference in order to transport
## the normal vector KE along the vertex array
Kp = KE - RE * dot (KE, RE);
KE = Kp / norm (Kp);
## Apply angular rotation to KE
cp = cos (anlr_rot_sl(i - 1));
sp = sin (anlr_rot_sl(i - 1));
KE = rotation (KE, RE, cp, sp).';
XS1 = - width2 * KE + X1;
XS2 = width2 * KE + X1;
px(:,i) = [XS1(1); XS2(1)];
py(:,i) = [XS1(2); XS2(2)];
pz(:,i) = [XS1(3); XS2(3)];
pc(:,i) = total_angle(i) * [1; 1];
endfor
h = surface (hax, px, py, pz, pc);
endfunction
## Interpolate speed and divergence onto the streamline vertices and
## return the first chunck of valid samples until a singularity /
## zero is hit or the streamline vertex array "sl" ends
function [lin_spd_sl, anlr_spd_sl, max_vertices] = ...
interp_sl (x, y, z, lin_spd, anlr_spd, sl)
anlr_spd_sl = interp3 (x, y, z, anlr_spd, sl(:,1), sl(:,2), sl(:,3));
lin_spd_sl = interp3 (x, y, z, lin_spd, sl(:,1), sl(:,2), sl(:,3));
is_singular_anlr_spd = find (isnan (anlr_spd_sl), 1, "first");
is_zero_lin_spd = find (lin_spd_sl == 0, 1, "first");
max_vertices = rows (sl);
if (! isempty (is_singular_anlr_spd))
max_vertices = min (max_vertices, is_singular_anlr_spd - 1);
endif
if (! isempty (is_zero_lin_spd))
max_vertices = min (max_vertices, is_zero_lin_spd - 1);
endif
endfunction
## N normal to X, so that N is in span ([0 0 1], X)
## If not possible then span ([1 0 0], X)
function N = get_normal2 (X)
if ((X(1) == 0) && (X(2) == 0))
A = [1, 0, 0];
else
A = [0, 0, 1];
endif
## Project A onto X and get the difference
N = A - X * dot (A, X) / (norm (X)^2);
N /= norm (N);
endfunction
## Rotate X around U where |U| = 1
## cp = cos (angle), sp = sin (angle)
function Y = rotation (X, U, cp, sp)
ux = U(1);
uy = U(2);
uz = U(3);
Y(1,:) = X(1) * (cp + ux * ux * (1 - cp)) + ...
X(2) * (ux * uy * (1 - cp) - uz * sp) + ...
X(3) * (ux * uz * (1 - cp) + uy * sp);
Y(2,:) = X(1) * (uy * ux * (1 - cp) + uz * sp) + ...
X(2) * (cp + uy * uy * (1 - cp)) + ...
X(3) * (uy * uz * (1 - cp) - ux * sp);
Y(3,:) = X(1) * (uz * ux * (1 - cp) - uy * sp) + ...
X(2) * (uz * uy * (1 - cp) + ux * sp) + ...
X(3) * (cp + uz * uz * (1 - cp));
endfunction
%!demo
%! clf;
%! [x, y, z] = meshgrid (0:0.2:4, -1:0.2:1, -1:0.2:1);
%! u = - x + 10;
%! v = 10 * z.*x;
%! w = - 10 * y.*x;
%! sx = [0, 0];
%! sy = [0, 0.6];
%! sz = [0, 0];
%! streamribbon (x, y, z, u, v, w, sx, sy, sz);
%! hold on;
%! quiver3 (x, y, z, u, v, w);
%! colormap (jet);
%! shading interp;
%! camlight ("headlight");
%! view (3);
%! axis tight equal off;
%! set (gca, "cameraviewanglemode", "manual");
%! hcb = colorbar;
%! title (hcb, "Angle");
%! title ("Streamribbon");
%!demo
%! clf;
%! t = (0:pi/50:2*pi).';
%! xyz{1} = [cos(t), sin(t), 0*t];
%! twist{1} = ones (numel (t), 1) * pi / (numel (t) - 1);
%! streamribbon (xyz, twist, 0.5);
%! colormap (jet);
%! view (3);
%! camlight ("headlight");
%! axis tight equal off;
%! title ("Moebius Strip");
## Test input validation
%!error <Invalid call> streamribbon ()
%!error <Invalid call> streamribbon (1)
%!error <Invalid call> streamribbon (1,2,3,4,5)
%!error <Invalid call> streamribbon (1,2,3,4,5,6,7,8)
%!error <Invalid call> streamribbon (1,2,3,4,5,6,7,8,9,10,11)
%!error <WIDTH must be a real scalar . 0> streamribbon (1,2,3,1i)
%!error <WIDTH must be a real scalar . 0> streamribbon (1,2,3,0)
%!error <WIDTH must be a real scalar . 0> streamribbon (1,2,3,-1)
%!error <ANLR_ROT must have same length as XYZ> streamribbon ({[1,1,1;2,2,2]},{[1,1,1]})
|