1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} surfnorm (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {} surfnorm (@var{z})
## @deftypefnx {} {} surfnorm (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {} surfnorm (@var{hax}, @dots{})
## @deftypefnx {} {[@var{Nx}, @var{Ny}, @var{Nz}] =} surfnorm (@dots{})
## Find the vectors normal to a meshgridded surface.
##
## If @var{x} and @var{y} are vectors, then a typical vertex is
## (@var{x}(j), @var{y}(i), @var{z}(i,j)). Thus, columns of @var{z} correspond
## to different @var{x} values and rows of @var{z} correspond to different
## @var{y} values. If only a single input @var{z} is given then @var{x} is
## taken to be @code{1:columns (@var{z})} and @var{y} is
## @code{1:rows (@var{z})}.
##
## If no return arguments are requested, a surface plot with the normal
## vectors to the surface is plotted.
##
## Any property/value input pairs are assigned to the surface object. The full
## list of properties is documented at @ref{Surface Properties}.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## If output arguments are requested then the components of the normal
## vectors are returned in @var{Nx}, @var{Ny}, and @var{Nz} and no plot is
## made. The normal vectors are unnormalized (magnitude != 1). To normalize,
## use
##
## @example
## @group
## len = sqrt (nx.^2 + ny.^2 + nz.^2);
## nx ./= len; ny ./= len; nz ./= len;
## @end group
## @end example
##
## An example of the use of @code{surfnorm} is
##
## @example
## surfnorm (peaks (25));
## @end example
##
## Algorithm: The normal vectors are calculated by taking the cross product
## of the diagonals of each of the quadrilateral faces in the meshgrid to find
## the normal vectors at the center of each face. Next, for each meshgrid
## point the four nearest normal vectors are averaged to obtain the final
## normal to the surface at the meshgrid point.
##
## For surface objects, the @qcode{"VertexNormals"} property contains
## equivalent information, except possibly near the boundary of the surface
## where different interpolation schemes may yield slightly different values.
##
## @seealso{isonormals, quiver3, surf, meshgrid}
## @end deftypefn
function [Nx, Ny, Nz] = surfnorm (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("surfnorm", varargin{:});
if (nargin == 0 || nargin == 2)
print_usage ();
endif
if (nargin == 1)
z = varargin{1};
[x, y] = meshgrid (1:columns (z), 1:rows (z));
ioff = 2;
else
x = varargin{1};
y = varargin{2};
z = varargin{3};
ioff = 4;
endif
if (iscomplex (z) || iscomplex (x) || iscomplex (y))
error ("surfnorm: X, Y, and Z must be 2-D real matrices");
endif
if (! size_equal (x, y, z))
error ("surfnorm: X, Y, and Z must have the same dimensions");
endif
## FIXME: Matlab uses a bicubic interpolation, not linear, along the boundary.
## Do a linear extrapolation for mesh points on the boundary so that the mesh
## is increased by 1 on each side. This allows each original meshgrid point
## to be surrounded by four quadrilaterals and the same calculation can be
## used for interior and boundary points. The extrapolation works badly for
## closed surfaces like spheres.
xx = [2 * x(:,1) - x(:,2), x, 2 * x(:,end) - x(:,end-1)];
xx = [2 * xx(1,:) - xx(2,:); xx; 2 * xx(end,:) - xx(end-1,:)];
yy = [2 * y(:,1) - y(:,2), y, 2 * y(:,end) - y(:,end-1)];
yy = [2 * yy(1,:) - yy(2,:); yy; 2 * yy(end,:) - yy(end-1,:)];
zz = [2 * z(:,1) - z(:,2), z, 2 * z(:,end) - z(:,end-1)];
zz = [2 * zz(1,:) - zz(2,:); zz; 2 * zz(end,:) - zz(end-1,:)];
u.x = xx(1:end-1,1:end-1) - xx(2:end,2:end);
u.y = yy(1:end-1,1:end-1) - yy(2:end,2:end);
u.z = zz(1:end-1,1:end-1) - zz(2:end,2:end);
v.x = xx(1:end-1,2:end) - xx(2:end,1:end-1);
v.y = yy(1:end-1,2:end) - yy(2:end,1:end-1);
v.z = zz(1:end-1,2:end) - zz(2:end,1:end-1);
c = cross ([u.x(:), u.y(:), u.z(:)], [v.x(:), v.y(:), v.z(:)]);
w.x = reshape (c(:,1), size (u.x));
w.y = reshape (c(:,2), size (u.y));
w.z = reshape (c(:,3), size (u.z));
## Create normal vectors as mesh vectices from normals at mesh centers
nx = (w.x(1:end-1,1:end-1) + w.x(1:end-1,2:end) +
w.x(2:end,1:end-1) + w.x(2:end,2:end)) / 4;
ny = (w.y(1:end-1,1:end-1) + w.y(1:end-1,2:end) +
w.y(2:end,1:end-1) + w.y(2:end,2:end)) / 4;
nz = (w.z(1:end-1,1:end-1) + w.z(1:end-1,2:end) +
w.z(2:end,1:end-1) + w.z(2:end,2:end)) / 4;
if (nargout == 0)
oldfig = [];
if (! isempty (hax))
oldfig = get (0, "currentfigure");
endif
unwind_protect
hax = newplot (hax);
surf (x, y, z, varargin{ioff:end});
old_hold_state = get (hax, "nextplot");
unwind_protect
set (hax, "nextplot", "add");
## Normalize the normal vectors
nmag = sqrt (nx.^2 + ny.^2 + nz.^2);
## And correct for the aspect ratio of the display
daratio = daspect (hax);
damag = sqrt (sumsq (daratio));
## FIXME: May also want to normalize the vectors relative to the size
## of the diagonal.
nx ./= nmag / (daratio(1)^2 / damag);
ny ./= nmag / (daratio(2)^2 / damag);
nz ./= nmag / (daratio(3)^2 / damag);
plot3 ([x(:).'; x(:).' + nx(:).' ; NaN(size(x(:).'))](:),
[y(:).'; y(:).' + ny(:).' ; NaN(size(y(:).'))](:),
[z(:).'; z(:).' + nz(:).' ; NaN(size(z(:).'))](:),
"r");
unwind_protect_cleanup
set (hax, "nextplot", old_hold_state);
end_unwind_protect
unwind_protect_cleanup
if (! isempty (oldfig))
set (0, "currentfigure", oldfig);
endif
end_unwind_protect
else
Nx = nx;
Ny = ny;
Nz = nz;
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! surfnorm (peaks (19));
%! shading faceted;
%! title ({"surfnorm() shows surface and normals at each vertex", ...
%! "peaks() function with 19 faces"});
%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = sombrero (10);
%! surfnorm (x, y, z);
%! title ({"surfnorm() shows surface and normals at each vertex", ...
%! "sombrero() function with 10 faces"});
## Test input validation
%!error <Invalid call> surfnorm ()
%!error <Invalid call> surfnorm (1,2)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (i)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (i, 1, 1)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (1, i, 1)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (1, 1, i)
%!error <X, Y, and Z must have the same dimensions> surfnorm ([1 2], 1, 1)
%!error <X, Y, and Z must have the same dimensions> surfnorm (1, [1 2], 1)
%!error <X, Y, and Z must have the same dimensions> surfnorm (1, 1, [1 2])
|