File: surfnorm.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (214 lines) | stat: -rw-r--r-- 7,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} surfnorm (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {} surfnorm (@var{z})
## @deftypefnx {} {} surfnorm (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {} surfnorm (@var{hax}, @dots{})
## @deftypefnx {} {[@var{Nx}, @var{Ny}, @var{Nz}] =} surfnorm (@dots{})
## Find the vectors normal to a meshgridded surface.
##
## If @var{x} and @var{y} are vectors, then a typical vertex is
## (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, columns of @var{z} correspond
## to different @var{x} values and rows of @var{z} correspond to different
## @var{y} values.  If only a single input @var{z} is given then @var{x} is
## taken to be @code{1:columns (@var{z})} and @var{y} is
## @code{1:rows (@var{z})}.
##
## If no return arguments are requested, a surface plot with the normal
## vectors to the surface is plotted.
##
## Any property/value input pairs are assigned to the surface object.  The full
## list of properties is documented at @ref{Surface Properties}.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## If output arguments are requested then the components of the normal
## vectors are returned in @var{Nx}, @var{Ny}, and @var{Nz} and no plot is
## made.  The normal vectors are unnormalized (magnitude != 1).  To normalize,
## use
##
## @example
## @group
## len = sqrt (nx.^2 + ny.^2 + nz.^2);
## nx ./= len;  ny ./= len;  nz ./= len;
## @end group
## @end example
##
## An example of the use of @code{surfnorm} is
##
## @example
## surfnorm (peaks (25));
## @end example
##
## Algorithm: The normal vectors are calculated by taking the cross product
## of the diagonals of each of the quadrilateral faces in the meshgrid to find
## the normal vectors at the center of each face.  Next, for each meshgrid
## point the four nearest normal vectors are averaged to obtain the final
## normal to the surface at the meshgrid point.
##
## For surface objects, the @qcode{"VertexNormals"} property contains
## equivalent information, except possibly near the boundary of the surface
## where different interpolation schemes may yield slightly different values.
##
## @seealso{isonormals, quiver3, surf, meshgrid}
## @end deftypefn

function [Nx, Ny, Nz] = surfnorm (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("surfnorm", varargin{:});

  if (nargin == 0 || nargin == 2)
    print_usage ();
  endif

  if (nargin == 1)
    z = varargin{1};
    [x, y] = meshgrid (1:columns (z), 1:rows (z));
    ioff = 2;
  else
    x = varargin{1};
    y = varargin{2};
    z = varargin{3};
    ioff = 4;
  endif

  if (iscomplex (z) || iscomplex (x) || iscomplex (y))
    error ("surfnorm: X, Y, and Z must be 2-D real matrices");
  endif
  if (! size_equal (x, y, z))
    error ("surfnorm: X, Y, and Z must have the same dimensions");
  endif

  ## FIXME: Matlab uses a bicubic interpolation, not linear, along the boundary.
  ## Do a linear extrapolation for mesh points on the boundary so that the mesh
  ## is increased by 1 on each side.  This allows each original meshgrid point
  ## to be surrounded by four quadrilaterals and the same calculation can be
  ## used for interior and boundary points.  The extrapolation works badly for
  ## closed surfaces like spheres.
  xx = [2 * x(:,1) - x(:,2), x, 2 * x(:,end) - x(:,end-1)];
  xx = [2 * xx(1,:) - xx(2,:); xx; 2 * xx(end,:) - xx(end-1,:)];
  yy = [2 * y(:,1) - y(:,2), y, 2 * y(:,end) - y(:,end-1)];
  yy = [2 * yy(1,:) - yy(2,:); yy; 2 * yy(end,:) - yy(end-1,:)];
  zz = [2 * z(:,1) - z(:,2), z, 2 * z(:,end) - z(:,end-1)];
  zz = [2 * zz(1,:) - zz(2,:); zz; 2 * zz(end,:) - zz(end-1,:)];

  u.x = xx(1:end-1,1:end-1) - xx(2:end,2:end);
  u.y = yy(1:end-1,1:end-1) - yy(2:end,2:end);
  u.z = zz(1:end-1,1:end-1) - zz(2:end,2:end);
  v.x = xx(1:end-1,2:end) - xx(2:end,1:end-1);
  v.y = yy(1:end-1,2:end) - yy(2:end,1:end-1);
  v.z = zz(1:end-1,2:end) - zz(2:end,1:end-1);

  c = cross ([u.x(:), u.y(:), u.z(:)], [v.x(:), v.y(:), v.z(:)]);
  w.x = reshape (c(:,1), size (u.x));
  w.y = reshape (c(:,2), size (u.y));
  w.z = reshape (c(:,3), size (u.z));

  ## Create normal vectors as mesh vectices from normals at mesh centers
  nx = (w.x(1:end-1,1:end-1) + w.x(1:end-1,2:end) +
        w.x(2:end,1:end-1) + w.x(2:end,2:end)) / 4;
  ny = (w.y(1:end-1,1:end-1) + w.y(1:end-1,2:end) +
        w.y(2:end,1:end-1) + w.y(2:end,2:end)) / 4;
  nz = (w.z(1:end-1,1:end-1) + w.z(1:end-1,2:end) +
        w.z(2:end,1:end-1) + w.z(2:end,2:end)) / 4;

  if (nargout == 0)
    oldfig = [];
    if (! isempty (hax))
      oldfig = get (0, "currentfigure");
    endif
    unwind_protect
      hax = newplot (hax);

      surf (x, y, z, varargin{ioff:end});
      old_hold_state = get (hax, "nextplot");
      unwind_protect
        set (hax, "nextplot", "add");

        ## Normalize the normal vectors
        nmag = sqrt (nx.^2 + ny.^2 + nz.^2);

        ## And correct for the aspect ratio of the display
        daratio = daspect (hax);
        damag = sqrt (sumsq (daratio));

        ## FIXME: May also want to normalize the vectors relative to the size
        ##        of the diagonal.

        nx ./= nmag / (daratio(1)^2 / damag);
        ny ./= nmag / (daratio(2)^2 / damag);
        nz ./= nmag / (daratio(3)^2 / damag);

        plot3 ([x(:).'; x(:).' + nx(:).' ; NaN(size(x(:).'))](:),
               [y(:).'; y(:).' + ny(:).' ; NaN(size(y(:).'))](:),
               [z(:).'; z(:).' + nz(:).' ; NaN(size(z(:).'))](:),
               "r");
      unwind_protect_cleanup
        set (hax, "nextplot", old_hold_state);
      end_unwind_protect

    unwind_protect_cleanup
      if (! isempty (oldfig))
        set (0, "currentfigure", oldfig);
      endif
    end_unwind_protect
  else
    Nx = nx;
    Ny = ny;
    Nz = nz;
  endif

endfunction


%!demo
%! clf;
%! colormap ("default");
%! surfnorm (peaks (19));
%! shading faceted;
%! title ({"surfnorm() shows surface and normals at each vertex", ...
%!         "peaks() function with 19 faces"});

%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = sombrero (10);
%! surfnorm (x, y, z);
%! title ({"surfnorm() shows surface and normals at each vertex", ...
%!         "sombrero() function with 10 faces"});

## Test input validation
%!error <Invalid call> surfnorm ()
%!error <Invalid call> surfnorm (1,2)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (i)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (i, 1, 1)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (1, i, 1)
%!error <X, Y, and Z must be 2-D real matrices> surfnorm (1, 1, i)
%!error <X, Y, and Z must have the same dimensions> surfnorm ([1 2], 1, 1)
%!error <X, Y, and Z must have the same dimensions> surfnorm (1, [1 2], 1)
%!error <X, Y, and Z must have the same dimensions> surfnorm (1, 1, [1 2])