1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
########################################################################
##
## Copyright (C) 2012-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} tetramesh (@var{T}, @var{X})
## @deftypefnx {} {} tetramesh (@var{T}, @var{X}, @var{C})
## @deftypefnx {} {} tetramesh (@dots{}, @var{property}, @var{val}, @dots{})
## @deftypefnx {} {@var{h} =} tetramesh (@dots{})
## Display the tetrahedrons defined in the m-by-4 matrix @var{T} as 3-D
## patches.
##
## @var{T} is typically the output of a Delaunay triangulation of a 3-D set
## of points. Every row of @var{T} contains four indices into the n-by-3
## matrix @var{X} of the vertices of a tetrahedron. Every row in @var{X}
## represents one point in 3-D space.
##
## The vector @var{C} specifies the color of each tetrahedron as an index
## into the current colormap. The default value is 1:m where m is the number
## of tetrahedrons; the indices are scaled to map to the full range of the
## colormap. If there are more tetrahedrons than colors in the colormap then
## the values in @var{C} are cyclically repeated.
##
## Calling @code{tetramesh (@dots{}, "property", "value", @dots{})} passes all
## property/value pairs directly to the patch function as additional arguments.
## The full list of properties is documented at @ref{Patch Properties}.
##
## The optional return value @var{h} is a vector of patch handles where each
## handle represents one tetrahedron in the order given by @var{T}.
## A typical use case for @var{h} is to turn the respective patch
## @qcode{"visible"} property @qcode{"on"} or @qcode{"off"}.
##
## Type @code{demo tetramesh} to see examples on using @code{tetramesh}.
## @seealso{trimesh, delaunay, delaunayn, patch}
## @end deftypefn
function h = tetramesh (varargin)
[reg, prop] = parseparams (varargin);
if (numel (reg) < 2 || numel (reg) > 3)
print_usage ();
endif
T = reg{1};
X = reg{2};
if (! ismatrix (T) || columns (T) != 4)
error ("tetramesh: T must be an n-by-4 matrix");
elseif (! ismatrix (X) || columns (X) != 3)
error ("tetramesh: X must be an n-by-3 matrix");
endif
size_T = rows (T);
cmap = colormap ();
if (length (reg) < 3)
size_cmap = rows (cmap);
C = mod ((1:size_T)' - 1, size_cmap) + 1;
if (size_T < size_cmap && size_T > 1)
## expand to the available range of colors
C = floor ((C - 1) * (size_cmap - 1) / (size_T - 1)) + 1;
endif
else
C = reg{3};
if (! isvector (C) || size_T != length (C))
error ("tetramesh: C must be a vector of the same length as T");
endif
endif
hax = newplot ();
hvec = zeros (size_T, 1);
if (strcmp (graphics_toolkit (), "gnuplot"))
## Tiny reduction of the tetrahedron size to help gnuplot by
## avoiding identical faces with different colors
for i = 1:size_T
[th, p] = __shrink__ ([1 2 3 4], X(T(i, :), :), 1 - 1e-7);
hvec(i) = patch ("Faces", th, "Vertices", p,
"FaceColor", cmap(C(i), :), "FaceAlpha", 0.9,
prop{:});
endfor
else
## FLTK does not support FaceAlpha.
for i = 1:size_T
th = [1 2 3; 2 3 4; 3 4 1; 4 1 2];
hvec(i) = patch ("Faces", th, "Vertices", X(T(i, :), :),
"FaceColor", cmap(C(i), :), "FaceAlpha", 1.0,
prop{:});
endfor
endif
if (! ishold ())
set (hax, "view", [-37.5, 30]);
endif
if (nargout > 0)
h = hvec;
endif
endfunction
## shrink the tetrahedron relative to its center of gravity
function [tri, p] = __shrink__ (T, X, sf)
midpoint = repmat (sum (X(T, :), 1) / 4, 12, 1);
p = [X([1 2 3], :); X([2 3 4], :); X([3 4 1], :); X([4 1 2], :)];
p = sf * (p - midpoint) + midpoint;
tri = reshape (1:12, 3, 4)';
endfunction
%!demo
%! clf;
%! d = [-1 1];
%! [x,y,z] = meshgrid (d, d, d);
%! x = [x(:); 0];
%! y = [y(:); 0];
%! z = [z(:); 0];
%! tetra = delaunay (x, y, z);
%! X = [x(:) y(:) z(:)];
%! colormap (jet (64));
%! h = tetramesh (tetra, X);
%! set (h(1:2:end), "visible", "off");
%! axis equal;
%! view (30, 20);
%! title ({"tetramesh() plot", ...
%! "colormap = jet (64), every other tetrahedron invisible"});
%!demo
%! clf;
%! d = [-1 1];
%! [x,y,z] = meshgrid (d, d, d);
%! x = [x(:); 0];
%! y = [y(:); 0];
%! z = [z(:); 0];
%! tetra = delaunay (x, y, z);
%! X = [x(:) y(:) z(:)];
%! colormap (gray (256));
%! tetramesh (tetra, X, 21:20:241, "EdgeColor", "w");
%! axis equal;
%! view (30, 20);
%! title ({"tetramesh() plot", ...
%! "colormap = gray (256) with white edges"});
|