1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z}, @var{c})
## @deftypefnx {} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z})
## @deftypefnx {} {} trisurf (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {@var{h} =} trisurf (@dots{})
## Plot a 3-D triangular surface.
##
## In contrast to @code{surf}, which plots a surface mesh using rectangles,
## @code{trisurf} plots the mesh using triangles.
##
## @var{tri} is typically the output of a Delaunay triangulation over the
## grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
## and contains three indices into [@var{x}, @var{y}] which are the vertices of
## the triangles in the x-y plane. @var{z} determines the height above the
## plane of each vertex.
##
## The color of the trisurf is computed by linearly scaling the @var{z} values
## to fit the range of the current colormap. Use @code{caxis} and/or change
## the colormap to control the appearance.
##
## Optionally, the color of the mesh can be specified independently of @var{z}
## by supplying @var{c}, which is a vector for colormap data, or a matrix with
## three columns for RGB data. The number of colors specified in @var{c} must
## either equal the number of vertices in @var{z} or the number of triangles
## in @var{tri}. When specifying the color at each vertex the triangle will
## be colored according to the color of the first vertex only (see patch
## documentation and the @qcode{"FaceColor"} property when set to
## @qcode{"flat"}).
##
## Any property/value pairs are passed directly to the underlying patch object.
## The full list of properties is documented at @ref{Patch Properties}.
##
## The optional return value @var{h} is a graphics handle to the created patch
## object.
## @seealso{surf, triplot, trimesh, delaunay, patch, shading}
## @end deftypefn
function h = trisurf (tri, x, y, z, varargin)
if (nargin < 4)
print_usage ();
endif
if (nargin > 4 && isnumeric (varargin{1}))
c = varargin{1};
varargin(1) = [];
if (isvector (c))
c = c(:);
endif
if (rows (c) != numel (z) && rows (c) != rows (tri))
error ("trisurf: the numbers of colors specified in C must equal the number of vertices in Z or the number of triangles in TRI");
elseif (columns (c) != 1 && columns (c) != 3)
error ("trisurf: TrueColor C matrix must have 3 columns");
endif
else
c = z(:);
endif
## For Matlab compatibility:
if (! any (strcmpi (varargin, "FaceColor")))
varargin(end+(1:2)) = {"FaceColor", "flat"};
endif
hax = newplot ();
htmp = patch ("Faces", tri, "Vertices", [x(:), y(:), z(:)],
"FaceVertexCData", c, varargin{:});
if (! ishold ())
set (hax, "view", [-37.5, 30],
"xgrid", "on", "ygrid", "on", "zgrid", "on");
endif
if (nargout > 0)
h = htmp;
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! N = 31;
%! [x, y] = meshgrid (1:N);
%! tri = delaunay (x(:), y(:));
%! z = peaks (N);
%! h = trisurf (tri, x, y, z, "facecolor", "flat");
%! axis tight;
%! zlim auto;
%! title ({"trisurf() of peaks() function", 'facecolor = "flat"'});
%!demo
%! clf;
%! colormap ("default");
%! N = 31;
%! [x, y] = meshgrid (1:N);
%! tri = delaunay (x(:), y(:));
%! z = peaks (N);
%! h = trisurf (tri, x, y, z, "facecolor", "interp");
%! axis tight;
%! zlim auto;
%! title ({"trisurf() of peaks() function", 'facecolor = "interp"'});
%!demo
%! clf;
%! colormap ("default");
%! old_state = rand ("state");
%! restore_state = onCleanup (@() rand ("state", old_state));
%! rand ("state", 10);
%! N = 10;
%! x = 3 - 6 * rand (N, N);
%! y = 3 - 6 * rand (N, N);
%! z = peaks (x, y);
%! tri = delaunay (x(:), y(:));
%! trisurf (tri, x(:), y(:), z(:));
%! title ("trisurf () of sparsely-sampled triangulation of peaks ()");
%!demo
%! clf;
%! colormap ("default");
%! x = rand (100, 1);
%! y = rand (100, 1);
%! z = x.^2 + y.^2;
%! tri = delaunay (x, y);
%! trisurf (tri, x, y, z);
%! title ({"trisurf() of random data", 'default "facecolor" = "flat", "edgecolor" = "black"'});
%!demo
%! clf;
%! colormap ("default");
%! x = rand (100, 1);
%! y = rand (100, 1);
%! z = x.^2 + y.^2;
%! tri = delaunay (x, y);
%! trisurf (tri, x, y, z, "facecolor", "interp");
%! title ({"trisurf() of random data", '"facecolor" = "interp"'});
%!demo
%! clf;
%! colormap ("default");
%! x = rand (100, 1);
%! y = rand (100, 1);
%! z = x.^2 + y.^2;
%! tri = delaunay (x, y);
%! trisurf (tri, x, y, z, "facecolor", "interp", "edgecolor", "w");
%! title ({"trisurf() of random data", '"facecolor" = "interp", "edgecolor" = "white"'});
## Test input validation
%!error <Invalid call> trisurf ()
%!error <Invalid call> trisurf (1)
%!error <Invalid call> trisurf (1,2)
%!error <Invalid call> trisurf (1,2,3)
%!error <the numbers of colors> trisurf (1,2,3,4,[5 6])
%!error <the numbers of colors> trisurf (1,2,3,4,[5 6]')
%!error <the numbers of colors> trisurf ([1;1],[2;2],[3;3],[4;4], zeros (3,3))
%!error <TrueColor C matrix must have 3 columns>
%! trisurf ([1;1],[2;2],[3;3],[4;4], zeros (2,2))
|