File: meshgrid.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (150 lines) | stat: -rw-r--r-- 5,152 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}, @var{y})
## @deftypefnx {} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {[@var{xx}, @var{yy}] =} meshgrid (@var{x})
## @deftypefnx {} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x})
## Given vectors of @var{x} and @var{y} coordinates, return matrices @var{xx}
## and @var{yy} corresponding to a full 2-D grid.
##
## The rows of @var{xx} are copies of @var{x}, and the columns of @var{yy} are
## copies of @var{y}.  If @var{y} is omitted, then it is assumed to be the same
## as @var{x}.
##
## If the optional @var{z} input is given, or @var{zz} is requested, then the
## output will be a full 3-D grid.  If @var{z} is omitted and @var{zz} is
## requested, it is assumed to be the same as @var{y}.
##
## @code{meshgrid} is most frequently used to produce input for a 2-D or 3-D
## function that will be plotted.  The following example creates a surface
## plot of the ``sombrero'' function.
##
## @example
## @group
## f = @@(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
## range = linspace (-8, 8, 41);
## [@var{X}, @var{Y}] = meshgrid (range, range);
## Z = f (X, Y);
## surf (X, Y, Z);
## @end group
## @end example
##
## Programming Note: @code{meshgrid} is restricted to 2-D or 3-D grid
## generation.  The @code{ndgrid} function will generate 1-D through N-D
## grids.  However, the functions are not completely equivalent.  If @var{x}
## is a vector of length M and @var{y} is a vector of length N, then
## @code{meshgrid} will produce an output grid which is NxM@.  @code{ndgrid}
## will produce an output which is @nospell{MxN} (transpose) for the same
## input.  Some core functions expect @code{meshgrid} input and others expect
## @code{ndgrid} input.  Check the documentation for the function in question
## to determine the proper input format.
## @seealso{ndgrid, mesh, contour, surf}
## @end deftypefn

function [xx, yy, zz] = meshgrid (x, y, z)

  if (nargin == 0)
    print_usage ();
  endif

  if (nargin < 2)
    y = x;
  endif

  ## Use repmat to ensure that result values have the same type as the inputs

  if (nargout < 3 && nargin < 3)
    if (! (isvector (x) && isvector (y)))
      error ("meshgrid: X and Y must be vectors");
    endif
    xx = repmat (x(:).', length (y), 1);
    yy = repmat (y(:), 1, length (x));
  else
    if (nargin < 3)
      z = y;
    endif
    if (! (isvector (x) && isvector (y) && isvector (z)))
      error ("meshgrid: X, Y, and Z must be vectors");
    endif
    lenx = length (x);
    leny = length (y);
    lenz = length (z);
    xx = repmat (repmat (x(:).', leny, 1), [1, 1, lenz]);
    yy = repmat (repmat (y(:), 1, lenx), [1, 1, lenz]);
    zz = reshape (repmat (z(:).', lenx*leny, 1)(:), leny, lenx, lenz);
  endif

endfunction


%!test
%! x = 1:2;
%! y = 1:3;
%! z = 1:4;
%! [XX, YY, ZZ] = meshgrid (x, y, z);
%! assert (size_equal (XX, YY, ZZ));
%! assert (ndims (XX), 3);
%! assert (size (XX), [3, 2, 4]);
%! assert (XX(1) * YY(1) * ZZ(1), x(1) * y(1) * z(1));
%! assert (XX(end) * YY(end) * ZZ(end), x(end) * y(end) * z(end));

%!test
%! x = 1:2;
%! y = 1:3;
%! [XX, YY] = meshgrid (x, y);
%! assert (size_equal (XX, YY));
%! assert (ndims (XX), 2);
%! assert (size (XX), [3, 2]);
%! assert (XX(1) * YY(1), x(1) * y(1));
%! assert (XX(end) * YY(end), x(end) * y(end));

%!test
%! x = 1:3;
%! [XX1, YY1] = meshgrid (x, x);
%! [XX2, YY2] = meshgrid (x);
%! assert (size_equal (XX1, XX2, YY1, YY2));
%! assert (ndims (XX1), 2);
%! assert (size (XX1), [3, 3]);
%! assert (XX1, XX2);
%! assert (YY1, YY2);

%!test
%! x = 1:2;
%! y = 1:3;
%! z = 1:4;
%! [XX, YY] = meshgrid (x, y, z);
%! assert (size_equal (XX, YY));
%! assert (ndims (XX), 3);
%! assert (size (XX), [3, 2, 4]);
%! assert (XX(1) * YY(1), x(1) * y(1));
%! assert (XX(end) * YY(end), x(end) * y(end));

## Test input validation
%!error <Invalid call> meshgrid ()
%!error <X and Y must be vectors> meshgrid (ones (2,2), 1:3)
%!error <X and Y must be vectors> meshgrid (1:3, ones (2,2))
%!error <X, Y, and Z must be vectors> [X,Y,Z] = meshgrid (1:3, 1:3, ones (2,2))