1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}, @var{y})
## @deftypefnx {} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {[@var{xx}, @var{yy}] =} meshgrid (@var{x})
## @deftypefnx {} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x})
## Given vectors of @var{x} and @var{y} coordinates, return matrices @var{xx}
## and @var{yy} corresponding to a full 2-D grid.
##
## The rows of @var{xx} are copies of @var{x}, and the columns of @var{yy} are
## copies of @var{y}. If @var{y} is omitted, then it is assumed to be the same
## as @var{x}.
##
## If the optional @var{z} input is given, or @var{zz} is requested, then the
## output will be a full 3-D grid. If @var{z} is omitted and @var{zz} is
## requested, it is assumed to be the same as @var{y}.
##
## @code{meshgrid} is most frequently used to produce input for a 2-D or 3-D
## function that will be plotted. The following example creates a surface
## plot of the ``sombrero'' function.
##
## @example
## @group
## f = @@(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
## range = linspace (-8, 8, 41);
## [@var{X}, @var{Y}] = meshgrid (range, range);
## Z = f (X, Y);
## surf (X, Y, Z);
## @end group
## @end example
##
## Programming Note: @code{meshgrid} is restricted to 2-D or 3-D grid
## generation. The @code{ndgrid} function will generate 1-D through N-D
## grids. However, the functions are not completely equivalent. If @var{x}
## is a vector of length M and @var{y} is a vector of length N, then
## @code{meshgrid} will produce an output grid which is NxM@. @code{ndgrid}
## will produce an output which is @nospell{MxN} (transpose) for the same
## input. Some core functions expect @code{meshgrid} input and others expect
## @code{ndgrid} input. Check the documentation for the function in question
## to determine the proper input format.
## @seealso{ndgrid, mesh, contour, surf}
## @end deftypefn
function [xx, yy, zz] = meshgrid (x, y, z)
if (nargin == 0)
print_usage ();
endif
if (nargin < 2)
y = x;
endif
## Use repmat to ensure that result values have the same type as the inputs
if (nargout < 3 && nargin < 3)
if (! (isvector (x) && isvector (y)))
error ("meshgrid: X and Y must be vectors");
endif
xx = repmat (x(:).', length (y), 1);
yy = repmat (y(:), 1, length (x));
else
if (nargin < 3)
z = y;
endif
if (! (isvector (x) && isvector (y) && isvector (z)))
error ("meshgrid: X, Y, and Z must be vectors");
endif
lenx = length (x);
leny = length (y);
lenz = length (z);
xx = repmat (repmat (x(:).', leny, 1), [1, 1, lenz]);
yy = repmat (repmat (y(:), 1, lenx), [1, 1, lenz]);
zz = reshape (repmat (z(:).', lenx*leny, 1)(:), leny, lenx, lenz);
endif
endfunction
%!test
%! x = 1:2;
%! y = 1:3;
%! z = 1:4;
%! [XX, YY, ZZ] = meshgrid (x, y, z);
%! assert (size_equal (XX, YY, ZZ));
%! assert (ndims (XX), 3);
%! assert (size (XX), [3, 2, 4]);
%! assert (XX(1) * YY(1) * ZZ(1), x(1) * y(1) * z(1));
%! assert (XX(end) * YY(end) * ZZ(end), x(end) * y(end) * z(end));
%!test
%! x = 1:2;
%! y = 1:3;
%! [XX, YY] = meshgrid (x, y);
%! assert (size_equal (XX, YY));
%! assert (ndims (XX), 2);
%! assert (size (XX), [3, 2]);
%! assert (XX(1) * YY(1), x(1) * y(1));
%! assert (XX(end) * YY(end), x(end) * y(end));
%!test
%! x = 1:3;
%! [XX1, YY1] = meshgrid (x, x);
%! [XX2, YY2] = meshgrid (x);
%! assert (size_equal (XX1, XX2, YY1, YY2));
%! assert (ndims (XX1), 2);
%! assert (size (XX1), [3, 3]);
%! assert (XX1, XX2);
%! assert (YY1, YY2);
%!test
%! x = 1:2;
%! y = 1:3;
%! z = 1:4;
%! [XX, YY] = meshgrid (x, y, z);
%! assert (size_equal (XX, YY));
%! assert (ndims (XX), 3);
%! assert (size (XX), [3, 2, 4]);
%! assert (XX(1) * YY(1), x(1) * y(1));
%! assert (XX(end) * YY(end), x(end) * y(end));
## Test input validation
%!error <Invalid call> meshgrid ()
%!error <X and Y must be vectors> meshgrid (ones (2,2), 1:3)
%!error <X and Y must be vectors> meshgrid (1:3, ones (2,2))
%!error <X, Y, and Z must be vectors> [X,Y,Z] = meshgrid (1:3, 1:3, ones (2,2))
|