File: ndgrid.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (133 lines) | stat: -rw-r--r-- 4,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{y1}, @var{y2}, @dots{}, @var{y}n] =} ndgrid (@var{x1}, @var{x2}, @dots{}, @var{x}n)
## @deftypefnx {} {[@var{y1}, @var{y2}, @dots{}, @var{y}n] =} ndgrid (@var{x})
## Given n vectors @var{x1}, @dots{}, @var{x}n, @code{ndgrid} returns n
## arrays of dimension n.
##
## The elements of the i-th output argument contains the elements of the
## vector @var{x}i repeated over all dimensions different from the i-th
## dimension.  Calling ndgrid with only one input argument @var{x} is
## equivalent to calling ndgrid with all n input arguments equal to @var{x}:
##
## [@var{y1}, @var{y2}, @dots{}, @var{y}n] = ndgrid (@var{x}, @dots{}, @var{x})
##
## Programming Note: @code{ndgrid} is very similar to the function
## @code{meshgrid} except that the first two dimensions are transposed in
## comparison to @code{meshgrid}.  Some core functions expect @code{meshgrid}
## input and others expect @code{ndgrid} input.  Check the documentation for
## the function in question to determine the proper input format.
## @seealso{meshgrid}
## @end deftypefn

function varargout = ndgrid (varargin)

  if (nargin == 0)
    print_usage ();
  elseif (nargin == 1)
    nd = max (nargout, 1);
    ## If only one input argument is given, repeat it nd-times
    varargin(1:nd) = varargin(1);
  elseif (nargin >= nargout)
    nd = max (nargin, 1);
  else
    error ("ndgrid: wrong number of input arguments");
  endif

  ## Determine the size of the output arguments
  shape = zeros (1, nd);
  for i = 1:nd
    if (! isvector (varargin{i}) && ! isempty (varargin{i}))
      error ("ndgrid: arguments must be vectors");
    endif
    shape(i) = length (varargin{i});
  endfor

  if (nd == 1)
    ## Special case, single input vector
    varargout{1} = varargin{1}(:);
  else
    for i = 1:nd
      ## size for reshape
      r = ones (1, nd+1);
      r(i) = shape(i);

      ## size for repmat
      s = shape;
      s(i) = 1;

      varargout{i} = repmat (reshape (varargin{i}, r), s);
    endfor
  endif

endfunction


%!test
%! x = 1:3;
%! assert (isequal (ndgrid (x), x(:)));

%!test
%! x = 1:3;
%! [XX, YY] = ndgrid (x);
%! assert (size_equal (XX, YY));
%! assert (isequal (XX, repmat (x(:), 1, numel (x))));
%! assert (isequal (YY, repmat (x, numel (x), 1)));

%!test
%! x = 1:2;
%! y = 1:3;
%! z = 1:4;
%! [XX, YY, ZZ] = ndgrid (x, y, z);
%! assert (size_equal (XX, YY, ZZ));
%! assert (ndims (XX), 3);
%! assert (size (XX), [2, 3, 4]);
%! assert (XX(1) * YY(1) * ZZ(1), x(1) * y(1) * z(1));
%! assert (XX(end) * YY(end) * ZZ(end), x(end) * y(end) * z(end));

%!test
%! x = 1:2;
%! y = 1:3;
%! [XX1, YY1] = meshgrid (x, y);
%! [XX2, YY2] = ndgrid (x, y);
%! assert (size_equal (XX1, YY1));
%! assert (size_equal (XX2, YY2));
%! assert (ndims (XX1), 2);
%! assert (size (XX1), [3, 2]);
%! assert (size (XX2), [2, 3]);
%! assert (XX2(1) * YY2(1), x(1) * y(1));
%! assert (XX2(end) * YY2(end), x(end) * y(end));
%! assert (XX1, XX2.');
%! assert (YY1, YY2.');

%!assert (ndgrid ([]), zeros (0,1))
%!assert (ndgrid ([], []), zeros(0,0))

## Test input validation
%!error <Invalid call> ndgrid ()
%!error <wrong number of input arguments> [a,b,c] = ndgrid (1:3,1:3)
%!error <arguments must be vectors> ndgrid (ones (2,2))