1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{pp} =} mkpp (@var{breaks}, @var{coefs})
## @deftypefnx {} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}, @var{d})
##
## Construct a piecewise polynomial (pp) structure from sample points
## @var{breaks} and coefficients @var{coefs}.
##
## @var{breaks} must be a vector of strictly increasing values. The number of
## intervals is given by @code{@var{ni} = length (@var{breaks}) - 1}.
##
## When @var{m} is the polynomial order @var{coefs} must be of size:
## @w{@var{ni}-by-(@var{m} + 1)}.
##
## The i-th row of @var{coefs}, @code{@var{coefs}(@var{i},:)}, contains the
## coefficients for the polynomial over the @var{i}-th interval, ordered from
## highest (@var{m}) to lowest (@var{0}) degree.
##
## @var{coefs} may also be a multi-dimensional array, specifying a
## vector-valued or array-valued polynomial. In that case the polynomial
## order @var{m} is defined by the length of the last dimension of @var{coefs}.
## The size of first dimension(s) are given by the scalar or vector @var{d}.
## If @var{d} is not given it is set to @code{1}. In this case
## @code{@var{p}(@var{r}, @var{i}, :)} contains the coefficients for the
## @var{r}-th polynomial defined on interval @var{i}. In any case @var{coefs}
## is reshaped to a 2-D matrix of size @code{[@var{ni}*prod(@var{d}) @var{m}]}.
##
## Programming Note: @code{ppval} evaluates polynomials at
## @code{@var{xi} - @var{breaks}(i)}, i.e., it subtracts the lower endpoint of
## the current interval from @var{xi}. This must be taken into account when
## creating piecewise polynomials objects with @code{mkpp}.
## @seealso{unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps}
## @end deftypefn
function pp = mkpp (breaks, coefs, d)
if (nargin < 2)
print_usage ();
endif
## Check BREAKS
if (! isvector (breaks))
error ("mkpp: BREAKS must be a vector");
elseif (length (breaks) < 2)
error ("mkpp: BREAKS must have at least one interval");
endif
len = length (breaks) - 1;
pp = struct ("form", "pp",
"breaks", breaks(:).',
"coefs", [],
"pieces", len,
"order", prod (size (coefs)) / len,
"dim", 1);
if (nargin == 3)
pp.dim = d;
pp.order /= prod (d);
endif
dim_vec = [pp.pieces * prod(pp.dim), pp.order];
pp.coefs = reshape (coefs, dim_vec);
endfunction
%!demo # linear interpolation
%! x = linspace (0, pi, 5)';
%! t = [sin(x), cos(x)];
%! m = diff (t) ./ (x(2)-x(1));
%! b = t(1:4,:);
%! pp = mkpp (x, [m(:),b(:)]);
%! xi = linspace (0, pi, 50);
%! plot (x, t, "x", xi, ppval (pp,xi));
%! legend ("control", "interp");
%!demo # piecewise polynomial shape
%! breaks = [0 1 2 3];
%! dim = 2;
%! coefs = zeros (dim, length (breaks) - 1, 4);
%! # 1st edge of the shape (x, x^2)
%! coefs(1,1,:) = [0 0 1 0];
%! coefs(2,1,:) = [0 1 0 0];
%! # 2nd edge of the shape (-3x, 1)
%! coefs(1,2,:) = [0 0 -3 1];
%! coefs(2,2,:) = [0 0 0 1];
%! # 3rd edge of the shape (2x - 2, -4(x -1/2)^3 + 1/2)
%! coefs(1,3,:) = [0 0 2 -2];
%! coefs(2,3,:) = [-4 6 -3 1];
%! pp = mkpp (breaks, coefs, dim);
%! t = linspace (0, 3, 100).';
%! xy = ppval (pp, t).';
%! patch (xy(:,1), xy(:,2), 'r');
%!shared b,c,pp
%! b = 1:3; c = 1:24; pp = mkpp (b,c);
%!assert (pp.pieces, 2)
%!assert (pp.order, 12)
%!assert (pp.dim, 1)
%!assert (size (pp.coefs), [2,12])
%! pp = mkpp (b,c,2);
%!assert (pp.pieces, 2)
%!assert (pp.order, 6)
%!assert (pp.dim, 2)
%!assert (size (pp.coefs), [4,6])
%! pp = mkpp (b,c,3);
%!assert (pp.pieces, 2)
%!assert (pp.order, 4)
%!assert (pp.dim, 3)
%!assert (size (pp.coefs), [6,4])
%! pp = mkpp (b,c,[2,3]);
%!assert (pp.pieces, 2)
%!assert (pp.order, 2)
%!assert (pp.dim, [2,3])
%!assert (size (pp.coefs), [12,2])
|