File: mpoles.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (164 lines) | stat: -rw-r--r-- 5,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{multp}, @var{idxp}] =} mpoles (@var{p})
## @deftypefnx {} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol})
## @deftypefnx {} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}, @var{reorder})
## Identify unique poles in @var{p} and their associated multiplicity.
##
## By default, the output is ordered from the pole with the largest magnitude
## to the smallest magnitude.
##
## Two poles are considered to be multiples if the difference between them
## is less than the relative tolerance @var{tol}.
##
## @example
## abs (@var{p1} - @var{p0}) / abs (@var{p0}) < @var{tol}
## @end example
##
## If the pole is 0 then no scaling is done and @var{tol} is interpreted as an
## absolute tolerance.  The default value for @var{tol} is 0.001.
##
## If the optional parameter @var{reorder} is false/zero, poles are not
## sorted.
##
## The output @var{multp} is a vector specifying the multiplicity of the poles.
## @code{@var{multp}(n)} refers to the multiplicity of the Nth pole
## @code{@var{p}(@var{idxp}(n))}.
##
## For example:
##
## @example
## @group
## p = [2 3 1 1 2];
## [m, n] = mpoles (p)
##    @result{} m = [1; 1; 2; 1; 2]
##    @result{} n = [2; 5; 1; 4; 3]
##    @result{} p(n) = [3, 2, 2, 1, 1]
## @end group
## @end example
##
## @seealso{residue, poly, roots, conv, deconv}
## @end deftypefn

function [multp, idxp] = mpoles (p, tol, reorder)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isfloat (p))
    error ("mpoles: P must be a single or double floating point vector");
  endif

  if (nargin < 2 || isempty (tol))
    tol = 0.001;
  elseif (! (isscalar (tol) && isreal (tol) && tol > 0))
    error ("mpoles: TOL must be a real scalar greater than 0");
  endif

  if (nargin < 3 || isempty (reorder))
    reorder = true;
  elseif (! (isscalar (reorder) && isreal (reorder)))
    error ("mpoles: REORDER must be a numeric or logical scalar");
  endif

  Np = numel (p);
  p = p(:);  # force poles to be a column vector

  if (reorder)
    ## sort with largest magnitude first
    [~, order] = sort (abs (p), "descend");
    p = p(order);
  else
    order = (1:Np).';
  endif

  ## Create vector of tolerances for use in algorithm.
  vtol = zeros (Np, 1, class (p));
  p_nz = (p != 0);     # non-zero poles
  vtol(! p_nz) = tol;  # use absolute tolerance for zero poles

  ## Find pole multiplicity by comparing relative difference of poles.
  multp = zeros (Np, 1, class (p));
  idxp = [];
  n = find (multp == 0, 1);
  while (n)
    dp = abs (p - p(n));
    vtol(p_nz) = tol * abs (p(n));
    k = find (dp < vtol);
    ## Poles can only be members of one multiplicity group.
    if (numel (idxp))
      k = k(! ismember (k, idxp));
    endif
    m = 1:numel (k);
    multp(k) = m;
    idxp = [idxp; k];
    n = find (multp == 0, 1);
  endwhile
  multp = multp(idxp);
  idxp = order(idxp);

endfunction


%!test
%! [mp, ip] = mpoles ([0 0], 0.01);
%! assert (mp, [1; 2]);

%!test
%! [mp, ip] = mpoles ([-1e4, -0.1, 0]);
%! assert (mp, [1; 1; 1]);
%! assert (ip, [1; 2; 3]);

## Test single inputs
%!test
%! [mp, ip] = mpoles (single ([-1e4, -0.1, 0]));
%! assert (mp, single ([1; 1; 1]));
%! assert (ip, [1; 2; 3]);

## Test relative tolerance criteria
%!test
%! [mp, ip] = mpoles ([1, 1.1, 1.3], .1/1.1);
%! assert (mp, [1; 1; 1]);
%! [mp, ip] = mpoles ([1, 1.1, 1.3], .1/1.1 + eps);
%! assert (mp, [1; 1; 2]);

## Test absolute tolerance criteria with a zero pole
%!test
%! [mp, ip] = mpoles ([0, -0.1, 0.3], .1);
%! assert (mp, [1; 1; 1]);
%! [mp, ip] = mpoles ([0, -0.1, 0.3], .1 + eps);
%! assert (mp, [1; 1; 2]);

## Test input validation
%!error <Invalid call> mpoles ()
%!error <P must be a single or double floating point vector> mpoles (uint8 (1))
%!error <TOL must be a real scalar greater than 0> mpoles (1, [1, 2])
%!error <TOL must be a real scalar greater than 0> mpoles (1, 1i)
%!error <TOL must be a real scalar greater than 0> mpoles (1, 0)
%!error <REORDER must be a numeric or logical scalar> mpoles (1, 1, [1, 2])
%!error <REORDER must be a numeric or logical scalar> mpoles (1, 1, {1})