1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{multp}, @var{idxp}] =} mpoles (@var{p})
## @deftypefnx {} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol})
## @deftypefnx {} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}, @var{reorder})
## Identify unique poles in @var{p} and their associated multiplicity.
##
## By default, the output is ordered from the pole with the largest magnitude
## to the smallest magnitude.
##
## Two poles are considered to be multiples if the difference between them
## is less than the relative tolerance @var{tol}.
##
## @example
## abs (@var{p1} - @var{p0}) / abs (@var{p0}) < @var{tol}
## @end example
##
## If the pole is 0 then no scaling is done and @var{tol} is interpreted as an
## absolute tolerance. The default value for @var{tol} is 0.001.
##
## If the optional parameter @var{reorder} is false/zero, poles are not
## sorted.
##
## The output @var{multp} is a vector specifying the multiplicity of the poles.
## @code{@var{multp}(n)} refers to the multiplicity of the Nth pole
## @code{@var{p}(@var{idxp}(n))}.
##
## For example:
##
## @example
## @group
## p = [2 3 1 1 2];
## [m, n] = mpoles (p)
## @result{} m = [1; 1; 2; 1; 2]
## @result{} n = [2; 5; 1; 4; 3]
## @result{} p(n) = [3, 2, 2, 1, 1]
## @end group
## @end example
##
## @seealso{residue, poly, roots, conv, deconv}
## @end deftypefn
function [multp, idxp] = mpoles (p, tol, reorder)
if (nargin < 1)
print_usage ();
endif
if (! isfloat (p))
error ("mpoles: P must be a single or double floating point vector");
endif
if (nargin < 2 || isempty (tol))
tol = 0.001;
elseif (! (isscalar (tol) && isreal (tol) && tol > 0))
error ("mpoles: TOL must be a real scalar greater than 0");
endif
if (nargin < 3 || isempty (reorder))
reorder = true;
elseif (! (isscalar (reorder) && isreal (reorder)))
error ("mpoles: REORDER must be a numeric or logical scalar");
endif
Np = numel (p);
p = p(:); # force poles to be a column vector
if (reorder)
## sort with largest magnitude first
[~, order] = sort (abs (p), "descend");
p = p(order);
else
order = (1:Np).';
endif
## Create vector of tolerances for use in algorithm.
vtol = zeros (Np, 1, class (p));
p_nz = (p != 0); # non-zero poles
vtol(! p_nz) = tol; # use absolute tolerance for zero poles
## Find pole multiplicity by comparing relative difference of poles.
multp = zeros (Np, 1, class (p));
idxp = [];
n = find (multp == 0, 1);
while (n)
dp = abs (p - p(n));
vtol(p_nz) = tol * abs (p(n));
k = find (dp < vtol);
## Poles can only be members of one multiplicity group.
if (numel (idxp))
k = k(! ismember (k, idxp));
endif
m = 1:numel (k);
multp(k) = m;
idxp = [idxp; k];
n = find (multp == 0, 1);
endwhile
multp = multp(idxp);
idxp = order(idxp);
endfunction
%!test
%! [mp, ip] = mpoles ([0 0], 0.01);
%! assert (mp, [1; 2]);
%!test
%! [mp, ip] = mpoles ([-1e4, -0.1, 0]);
%! assert (mp, [1; 1; 1]);
%! assert (ip, [1; 2; 3]);
## Test single inputs
%!test
%! [mp, ip] = mpoles (single ([-1e4, -0.1, 0]));
%! assert (mp, single ([1; 1; 1]));
%! assert (ip, [1; 2; 3]);
## Test relative tolerance criteria
%!test
%! [mp, ip] = mpoles ([1, 1.1, 1.3], .1/1.1);
%! assert (mp, [1; 1; 1]);
%! [mp, ip] = mpoles ([1, 1.1, 1.3], .1/1.1 + eps);
%! assert (mp, [1; 1; 2]);
## Test absolute tolerance criteria with a zero pole
%!test
%! [mp, ip] = mpoles ([0, -0.1, 0.3], .1);
%! assert (mp, [1; 1; 1]);
%! [mp, ip] = mpoles ([0, -0.1, 0.3], .1 + eps);
%! assert (mp, [1; 1; 2]);
## Test input validation
%!error <Invalid call> mpoles ()
%!error <P must be a single or double floating point vector> mpoles (uint8 (1))
%!error <TOL must be a real scalar greater than 0> mpoles (1, [1, 2])
%!error <TOL must be a real scalar greater than 0> mpoles (1, 1i)
%!error <TOL must be a real scalar greater than 0> mpoles (1, 0)
%!error <REORDER must be a numeric or logical scalar> mpoles (1, 1, [1, 2])
%!error <REORDER must be a numeric or logical scalar> mpoles (1, 1, {1})
|