1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
########################################################################
##
## Copyright (C) 2014-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{num}, @var{den}] =} padecoef (@var{T})
## @deftypefnx {} {[@var{num}, @var{den}] =} padecoef (@var{T}, @var{N})
## Compute the @var{N}th-order Pad@'e approximant of the continuous-time
## delay @var{T} in transfer function form.
##
## @tex
## The Pad\'e approximant of $e^{-sT}$ is defined by the following equation
## $$ e^{-sT} \approx {P_n(s) \over Q_n(s)} $$
## where both $P_n(s)$ and $Q_n(s)$ are $N^{th}$-order rational functions
## defined by the following expressions
## $$ P_n(s)=\sum_{k=0}^N {(2N - k)!N!\over (2N)!k!(N - k)!}(-sT)^k $$
## $$ Q_n(s) = P_n(-s) $$
## @end tex
## @ifnottex
## The Pad@'e approximant of @nospell{@code{exp (-sT)}} is defined by the
## following equation
##
## @example
## @group
## Pn(s)
## exp (-sT) ~ -------
## Qn(s)
## @end group
## @end example
##
## Where both @nospell{Pn(s) and Qn(s)} are @var{N}th-order rational functions
## defined by the following expressions
##
## @example
## @group
## N (2N - k)!N! k
## Pn(s) = SUM --------------- (-sT)
## k=0 (2N)!k!(N - k)!
##
## Qn(s) = Pn(-s)
## @end group
## @end example
##
## @end ifnottex
##
## The inputs @var{T} and @var{N} must be non-negative numeric scalars. If
## @var{N} is unspecified it defaults to 1.
##
## The output row vectors @var{num} and @var{den} contain the numerator and
## denominator coefficients in descending powers of s. Both are
## @var{N}th-order polynomials.
##
## For example:
##
## @smallexample
## @group
## t = 0.1;
## n = 4;
## [num, den] = padecoef (t, n)
## @result{} num =
##
## 1.0000e-04 -2.0000e-02 1.8000e+00 -8.4000e+01 1.6800e+03
##
## @result{} den =
##
## 1.0000e-04 2.0000e-02 1.8000e+00 8.4000e+01 1.6800e+03
## @end group
## @end smallexample
## @end deftypefn
function [num, den] = padecoef (T, N = 1)
if (nargin < 1)
print_usage ();
endif
if (! (isscalar (T) && isnumeric (T) && T >= 0))
error ("padecoef: T must be a non-negative scalar");
elseif (! (isscalar (N) && isnumeric (N) && N >= 0))
error ("padecoef: N must be a non-negative scalar");
endif
N = round (N);
k = N : -1 : 0;
num = prod (linspace ((N - k + 1), (2 * N - k), N)', ones (1, N)) ...
/ prod (N + 1 : 2 * N) ./ factorial (k);
num /= num(1);
den = num .* (T .^ k);
num .*= ((-T) .^ k);
endfunction
%!test
%! T = 1;
%! [n_obs, d_obs] = padecoef (T);
%! n_exp = [1, 2] .* [-T, 1];
%! d_exp = [1, 2] .* [T, 1];
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);
%!test
%! T = 0.1;
%! [n_obs, d_obs] = padecoef (T);
%! n_exp = [1, 2] .* [-T, 1];
%! d_exp = [1, 2] .* [T, 1];
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);
%!test
%! T = 1;
%! N = 2;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, N);
%! n_exp = [1, 6, 12] .* ((-T) .^ k);
%! d_exp = [1, 6, 12] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);
%!test
%! T = 0.25;
%! N = 2;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, 2);
%! n_exp = [1, 6, 12] .* ((-T) .^ k);
%! d_exp = [1, 6, 12] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);
%!test
%! T = 0.47;
%! N = 3;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, N);
%! n_exp = [1, 12, 60, 120] .* ((-T) .^ k);
%! d_exp = [1, 12, 60, 120] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);
%!test
%! T = 1;
%! N = 7;
%! i = 0 : 2 * N;
%! b = ((-T) .^ i) ./ factorial (i);
%! A = [[eye(N + 1); zeros(N, N + 1)], ...
%! [zeros(1, N); toeplitz(-b(1 : 2 * N), [-b(1), zeros(1, N-1)])]];
%! x = A \ b';
%! k = N : -1 : 0;
%! d_exp = [flipud(x(N + 2 : 2 * N + 1)); 1]';
%! n_exp = flipud (x(1 : N + 1))';
%! n_exp ./= d_exp(1);
%! d_exp ./= d_exp(1);
%! [n_obs, d_obs] = padecoef (T, N);
%! assert ([n_obs, d_obs], [n_exp, d_exp], 1e-2);
## For checking in Wolfram Alpha (look at Alternate forms -> more):
## PadeApproximant[Exp[-x * T], {x, 0, {n, n}}]
## Test input validation
%!error <Invalid call> padecoef ()
%!error <T must be a non-negative scalar> padecoef ([1,2])
%!error <T must be a non-negative scalar> padecoef ({1})
%!error <T must be a non-negative scalar> padecoef (-1)
%!error <N must be a non-negative scalar> padecoef (1, [1,2])
%!error <N must be a non-negative scalar> padecoef (1, {1})
%!error <N must be a non-negative scalar> padecoef (1, -1)
|