File: padecoef.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (182 lines) | stat: -rw-r--r-- 5,344 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
########################################################################
##
## Copyright (C) 2014-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{num}, @var{den}] =} padecoef (@var{T})
## @deftypefnx {} {[@var{num}, @var{den}] =} padecoef (@var{T}, @var{N})
## Compute the @var{N}th-order Pad@'e approximant of the continuous-time
## delay @var{T} in transfer function form.
##
## @tex
## The Pad\'e approximant of $e^{-sT}$ is defined by the following equation
## $$ e^{-sT} \approx {P_n(s) \over Q_n(s)} $$
## where both $P_n(s)$ and $Q_n(s)$ are $N^{th}$-order rational functions
## defined by the following expressions
## $$ P_n(s)=\sum_{k=0}^N {(2N - k)!N!\over (2N)!k!(N - k)!}(-sT)^k $$
## $$ Q_n(s) = P_n(-s) $$
## @end tex
## @ifnottex
## The Pad@'e approximant of @nospell{@code{exp (-sT)}} is defined by the
## following equation
##
## @example
## @group
##              Pn(s)
## exp (-sT) ~ -------
##              Qn(s)
## @end group
## @end example
##
## Where both @nospell{Pn(s) and Qn(s)} are @var{N}th-order rational functions
## defined by the following expressions
##
## @example
## @group
##          N    (2N - k)!N!        k
## Pn(s) = SUM --------------- (-sT)
##         k=0 (2N)!k!(N - k)!
##
## Qn(s) = Pn(-s)
## @end group
## @end example
##
## @end ifnottex
##
## The inputs @var{T} and @var{N} must be non-negative numeric scalars.  If
## @var{N} is unspecified it defaults to 1.
##
## The output row vectors @var{num} and @var{den} contain the numerator and
## denominator coefficients in descending powers of s.  Both are
## @var{N}th-order polynomials.
##
## For example:
##
## @smallexample
## @group
## t = 0.1;
## n = 4;
## [num, den] = padecoef (t, n)
## @result{} num =
##
##       1.0000e-04  -2.0000e-02   1.8000e+00  -8.4000e+01   1.6800e+03
##
## @result{} den =
##
##       1.0000e-04   2.0000e-02   1.8000e+00   8.4000e+01   1.6800e+03
## @end group
## @end smallexample
## @end deftypefn

function [num, den] = padecoef (T, N = 1)

  if (nargin < 1)
    print_usage ();
  endif

  if (! (isscalar (T) && isnumeric (T) && T >= 0))
    error ("padecoef: T must be a non-negative scalar");
  elseif (! (isscalar (N) && isnumeric (N) && N >= 0))
    error ("padecoef: N must be a non-negative scalar");
  endif

  N = round (N);
  k = N : -1 : 0;
  num = prod (linspace ((N - k + 1), (2 * N - k), N)', ones (1, N)) ...
        / prod (N + 1 : 2 * N) ./ factorial (k);
  num /= num(1);
  den = num .* (T .^ k);
  num .*= ((-T) .^ k);

endfunction


%!test
%! T = 1;
%! [n_obs, d_obs] = padecoef (T);
%! n_exp = [1, 2] .* [-T, 1];
%! d_exp = [1, 2] .* [T, 1];
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 0.1;
%! [n_obs, d_obs] = padecoef (T);
%! n_exp = [1, 2] .* [-T, 1];
%! d_exp = [1, 2] .* [T, 1];
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 1;
%! N = 2;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, N);
%! n_exp = [1, 6, 12] .* ((-T) .^ k);
%! d_exp = [1, 6, 12] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 0.25;
%! N = 2;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, 2);
%! n_exp = [1, 6, 12] .* ((-T) .^ k);
%! d_exp = [1, 6, 12] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 0.47;
%! N = 3;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, N);
%! n_exp = [1, 12, 60, 120] .* ((-T) .^ k);
%! d_exp = [1, 12, 60, 120] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 1;
%! N = 7;
%! i = 0 : 2 * N;
%! b = ((-T) .^ i) ./ factorial (i);
%! A = [[eye(N + 1); zeros(N, N + 1)], ...
%!      [zeros(1, N); toeplitz(-b(1 : 2 * N), [-b(1), zeros(1, N-1)])]];
%! x = A \ b';
%! k = N : -1 : 0;
%! d_exp = [flipud(x(N + 2 : 2 * N + 1)); 1]';
%! n_exp = flipud (x(1 : N + 1))';
%! n_exp ./= d_exp(1);
%! d_exp ./= d_exp(1);
%! [n_obs, d_obs] = padecoef (T, N);
%! assert ([n_obs, d_obs], [n_exp, d_exp], 1e-2);

## For checking in Wolfram Alpha (look at Alternate forms -> more):
## PadeApproximant[Exp[-x * T], {x, 0, {n, n}}]

## Test input validation
%!error <Invalid call> padecoef ()
%!error <T must be a non-negative scalar> padecoef ([1,2])
%!error <T must be a non-negative scalar> padecoef ({1})
%!error <T must be a non-negative scalar> padecoef (-1)
%!error <N must be a non-negative scalar> padecoef (1, [1,2])
%!error <N must be a non-negative scalar> padecoef (1, {1})
%!error <N must be a non-negative scalar> padecoef (1, -1)