1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
########################################################################
##
## Copyright (C) 2009-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{g} =} polyaffine (@var{f}, @var{mu})
## Return the coefficients of the polynomial vector @var{f} after an affine
## transformation.
##
## If @var{f} is the vector representing the polynomial f(x), then
## @code{@var{g} = polyaffine (@var{f}, @var{mu})} is the vector representing:
##
## @example
## g(x) = f( (x - @var{mu}(1)) / @var{mu}(2) )
## @end example
##
## @seealso{polyval, polyfit}
## @end deftypefn
function g = polyaffine (f, mu)
if (nargin != 2)
print_usage ();
endif
if (! isvector (f))
error ("polyaffine: F must be a vector");
endif
if (! isvector (mu) || length (mu) != 2)
error ("polyaffine: MU must be a two-element vector");
endif
lf = length (f);
## Ensure that f is a row vector
if (rows (f) > 1)
f = f.';
endif
g = f;
## Scale.
if (mu(2) != 1)
g ./= mu(2) .^ (lf-1:-1:0);
endif
## Translate.
if (mu(1) != 0)
w = (-mu(1)) .^ (0:lf-1);
ii = lf:-1:1;
g = g(ii) * (toeplitz (w) .* pascal (lf, -1));
g = g(ii);
endif
endfunction
%!demo
%! f = [1/5 4/5 -7/5 -2];
%! g = polyaffine (f, [1, 1.2]);
%! x = linspace (-4,4,100);
%! plot (x,polyval (f, x), x,polyval (g, x));
%! legend ("original", "affine");
%! axis ([-4 4 -3 5]);
%! grid on;
%!test
%! f = [1/5 4/5 -7/5 -2];
%! mu = [1, 1.2];
%! g = polyaffine (f, mu);
%! x = linspace (-4,4,100);
%! assert (polyval (f, x, [], mu), polyval (g, x), 1e-10);
|