File: polyfit.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (350 lines) | stat: -rw-r--r-- 10,725 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{p} =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {} {[@var{p}, @var{s}] =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n})
## Return the coefficients of a polynomial @var{p}(@var{x}) of degree @var{n}
## that minimizes the least-squares-error of the fit to the points
## @code{[@var{x}(:), @var{y}(:)]}.
##
## @var{n} is typically an integer @geq{} 0 specifying the degree of the
## approximating polynomial.  If @var{n} is a logical vector, it is used as a
## mask to selectively force the corresponding polynomial coefficients to be
## used or ignored.
##
## The polynomial coefficients are returned in the row vector @var{p}.  The
## output @var{p} may be directly used with @code{polyval} to estimate values
## using the fitted polynomial.
##
## The optional output @var{s} is a structure containing the following fields:
##
## @table @samp
##
## @item yf
## The values of the polynomial for each value of @var{x}.
##
## @item X
## The @nospell{Vandermonde} matrix used to compute the polynomial
## coefficients.
##
## @item R
## Triangular factor R from the QR@tie{}decomposition.
##
## @item C
## The unscaled covariance matrix, formally equal to the inverse of
## @var{x'}*@var{x}, but computed in a way minimizing roundoff error
## propagation.
##
## @item df
## The degrees of freedom.
##
## @item normr
## The norm of the residuals.
## @end table
##
## The second output may be used by @code{polyval} to calculate the statistical
## error limits of the predicted values.  In particular, the standard deviation
## of @var{p} coefficients is given by
##
## @code{sqrt (diag (@var{s.C})/@var{s.df}) * @var{s.normr}}.
##
## When the third output, @var{mu}, is present the original data is centered
## and scaled which can improve the numerical stability of the fit.  The
## coefficients @var{p} are associated with a polynomial in
##
## @code{@var{xhat} = (@var{x} - @var{mu}(1)) / @var{mu}(2)} @*
## where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}).
##
## Example 1 : logical @var{n} and integer @var{n}
##
## @example
## @group
## f = @@(x) x.^2 + 5;   # data-generating function
## x = 0:5;
## y = f (x);
## ## Fit data to polynomial A*x^3 + B*x^1
## p = polyfit (x, y, logical ([1, 0, 1, 0]))
## @result{} p = [ 0.0680, 0, 4.2444, 0 ]
## ## Fit data to polynomial using all terms up to x^3
## p = polyfit (x, y, 3)
## @result{} p = [ -4.9608e-17, 1.0000e+00, -3.3813e-15, 5.0000e+00 ]
## @end group
## @end example
##
## @seealso{polyval, polyaffine, roots, vander, zscore}
## @end deftypefn

function [p, s, mu] = polyfit (x, y, n)

  if (nargin < 3)
    print_usage ();
  endif

  y_is_row_vector = isrow (y);

  ## Reshape x & y into column vectors.
  x = x(:);
  y = y(:);

  nx = numel (x);
  ny = numel (y);
  if (nx != ny)
    error ("polyfit: X and Y must have the same number of points");
  endif

  if (nargout > 2)
    ## Center and scale the x values.
    mu = [mean(x), std(x)];
    x = (x - mu(1)) / mu(2);
  endif

  ## n is the polynomial degree (an input, or deduced from the polymask size)
  ## m is the effective number of coefficients.
  if (islogical (n))
    polymask = n(:).';          # force to row vector
    n = numel (polymask) - 1;
    m = sum (polymask) - 1;
    pad_output = true;
  else
    if (! (isscalar (n) && n >= 0 && ! isinf (n) && n == fix (n)))
      error ("polyfit: N must be a non-negative integer");
    endif
    polymask = true (1, n+1);
    m = n;
    pad_output = false;
  endif

  if (m >= nx)
    warning ("polyfit: degree of polynomial N is >= number of data points; solution is not unique");
    m = nx;
    pad_output = true;
    ## Keep the lowest m entries in polymask
    idx = find (polymask);
    idx((end-m+1):end) = [];
    polymask(idx) = false;
  endif

  ## Construct the Vandermonde matrix.
  X = vander (x, n+1);
  v = X(:, polymask);

  ## Solve by QR decomposition.
  [q, r, k] = qr (v, 0);
  p = r \ (q' * y);
  p(k) = p;

  if (nargout > 1)
    yf = v*p;
    if (y_is_row_vector)
      s.yf = yf.';
    else
      s.yf = yf;
    endif

    s.X = X;

    ## r.'*r is positive definite if matrix v is of full rank.  Invert it by
    ## cholinv to avoid taking the square root of squared quantities.
    ## If cholinv fails, then v is rank deficient and not invertible.
    try
      C = cholinv (r.'*r)(k, k);
    catch
      C = NaN (m, m);
    end_try_catch

    if (pad_output)
      s.X(:, ! polymask) = 0;
      s.R = zeros (rows (r), n+1); s.R(:, polymask) = r;
      s.C = zeros (rows (C), n+1); s.C(:, polymask) = C;
    else
      s.R = r;
      s.C = C;
    endif

    s.df = max (0, nx - m - 1);
    s.normr = norm (yf - y);
  endif

  if (pad_output)
    ## Zero pad output
    q = p;
    p = zeros (n+1, 1);
    p(polymask) = q;
  endif
  p = p.';  # Return a row vector.

endfunction


%!shared x
%! x = [-2, -1, 0, 1, 2];

%!assert (polyfit (x, 3*x.^2 + 2*x + 1, 2), [3, 2, 1], 10*eps)
%!assert (polyfit (x, 3*x.^2 + 2*x + 1, logical ([1 1 1])), [3, 2, 1], 10*eps)
%!assert (polyfit (x, x.^2 + 2*x + 3, 3), [0, 1, 2, 3], 10*eps)
%!assert (polyfit (x, x.^2 + 2*x + 3, logical ([0 1 1 1])), [0 1 2 3], 10*eps)

## Test logical input N
%!test
%! x = [0:5];
%! y = 3*x.^3 + 2*x.^2 + 4;
%! [p, s] = polyfit (x, y, logical ([1, 0, 1, 1]));
%! assert (p(2), 0);
%! assert (all (p([1, 3, 4])));
%! assert (s.df, 3);

## Test difficult case where scaling is really needed.  This example
## demonstrates the rather poor result which occurs when the dependent
## variable is not normalized properly.
## Also check the usage of 2nd & 3rd output arguments.
%!test
%! warning ("off", "Octave:nearly-singular-matrix", "local");
%! x = [ -1196.4, -1195.2, -1194, -1192.8, -1191.6, -1190.4, -1189.2, -1188, ...
%!       -1186.8, -1185.6, -1184.4, -1183.2, -1182];
%! y = [ 315571.7086, 315575.9618, 315579.4195, 315582.6206, 315585.4966, ...
%!       315588.3172, 315590.9326, 315593.5934, 315596.0455, 315598.4201, ...
%!       315600.7143, 315602.9508, 315605.1765 ];
%! [p1, s1] = polyfit (x, y, 10);
%! [p2, s2, mu] = polyfit (x, y, 10);
%! assert (s2.normr < s1.normr);

%!test
%! warning ("off", "Octave:nearly-singular-matrix", "local");
%! x = 1000 + (-5:5);
%! xn = (x - mean (x)) / std (x);
%! pn = ones (1,5);
%! y = polyval (pn, xn);
%! n = numel (pn) - 1;
%! [p, s, mu] = polyfit (x, y, n);
%! [p2, s2] = polyfit (x, y, n);
%! assert (p, pn, s.normr);
%! assert (s.yf, y, s.normr);
%! assert (mu, [mean(x), std(x)]);
%! assert (s.normr/s2.normr < sqrt (eps));

## Complex polynomials
%!test
%! x = 1:4;
%! p0 = [1i, 0, 2i, 4];
%! y = polyval (p0, x);
%! n = numel (p0) - 1;
%! p = polyfit (x, y, n);
%! assert (p, p0, 1000*eps);

## Matrix input
%!test
%! x = [1, 2, 3; 4, 5, 6];
%! y = [0, 0, 1; 1, 0, 0];
%! p = polyfit (x, y, 5);
%! expected = [0, 1, -14, 65, -112, 60] / 12;
%! assert (p, expected, sqrt (eps));

## Orientation of output
%!test
%! x = 0:5;
%! y = x.^4 + 2*x + 5;
%! [p, s] = polyfit (x, y, 3);
%! assert (isrow (s.yf));
%! [p, s] = polyfit (x, y.', 3);
%! assert (iscolumn (s.yf));

## Insufficient data for fit
%!test
%! x = [1, 2];
%! y = [3, 4];
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%!   warning ("off", "all");
%!   p0 = polyfit (x, y, 4);
%!   [p1, s, mu] = polyfit (x, y, 4);
%! unwind_protect_cleanup
%!   warning (wstate);
%! end_unwind_protect
%! assert (p0, [0, 0, 0, 1, 2], 10*eps);
%! assert (p1, [0, 0, 0, sqrt(2)/2, 3.5], 10*eps);
%! assert (size (s.X), [2, 5]);
%! assert (s.X(:,1:3), zeros (2,3));
%! assert (size (s.R), [2, 5]);
%! assert (s.R(:,1:3), zeros (2,3));
%! assert (size (s.C), [2, 5]);
%! assert (s.C(:,1:3), zeros (2,3));
%! assert (s.df, 0);
%! assert (mu, [1.5, sqrt(2)/2]);

%!test
%! x = [1, 2, 3];
%! y = 2*x + 1;
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%!   warning ("off", "all");
%!   p0 = polyfit (x, y, logical ([1, 1, 1, 0 1]));
%!   [p1, s, mu] = polyfit (x, y, logical ([1, 1, 1, 0 1]));
%! unwind_protect_cleanup
%!   warning (wstate);
%! end_unwind_protect
%! assert (p0, [0, -2/11, 12/11, 0, 23/11], 10*eps);
%! assert (p1, [0, 2, 0, 0, 5], 10*eps);
%! assert (size (s.X), [3, 5]);
%! assert (s.X(:,[1,4]), zeros (3,2));
%! assert (size (s.R), [3, 5]);
%! assert (s.R(:,[1,4]), zeros (3,2));
%! assert (size (s.C), [3, 5]);
%! assert (s.C(:,[1,4]), zeros (3,2));
%! assert (s.df, 0);
%! assert (mu, [2, 1]);

%!test <*57964>
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%!   warning ("off", "all");
%!   [p, s] = polyfit ([1,2], [3,4], 2);
%! unwind_protect_cleanup
%!   warning (wstate);
%! end_unwind_protect
%! assert (size (p), [1, 3]);
%! assert (size (s.X), [2, 3]);
%! assert (s.X(:,1), [0; 0]);
%! assert (size (s.R), [2, 3]);
%! assert (s.R(:,1), [0; 0]);
%! assert (size (s.C), [2, 3]);
%! assert (s.C(:,1), [0; 0]);

## Test input validation
%!error <Invalid call> polyfit ()
%!error <Invalid call> polyfit (1)
%!error <Invalid call> polyfit (1,2)
%!error <X and Y must have the same number of points> polyfit ([1, 2], 1, 1)
%!error <X and Y must have the same number of points> polyfit (1, [1, 2], 1)
%!error <N must be a non-negative integer> polyfit (1, 2, [1,2])
%!error <N must be a non-negative integer> polyfit (1, 2, -1)
%!error <N must be a non-negative integer> polyfit (1, 2, Inf)
%!error <N must be a non-negative integer> polyfit (1, 2, 1.5)
%!test <*57964>
%! fail ("p = polyfit ([1,2], [3,4], 4)", "warning", "solution is not unique");