1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{p} =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {} {[@var{p}, @var{s}] =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n})
## Return the coefficients of a polynomial @var{p}(@var{x}) of degree @var{n}
## that minimizes the least-squares-error of the fit to the points
## @code{[@var{x}(:), @var{y}(:)]}.
##
## @var{n} is typically an integer @geq{} 0 specifying the degree of the
## approximating polynomial. If @var{n} is a logical vector, it is used as a
## mask to selectively force the corresponding polynomial coefficients to be
## used or ignored.
##
## The polynomial coefficients are returned in the row vector @var{p}. The
## output @var{p} may be directly used with @code{polyval} to estimate values
## using the fitted polynomial.
##
## The optional output @var{s} is a structure containing the following fields:
##
## @table @samp
##
## @item yf
## The values of the polynomial for each value of @var{x}.
##
## @item X
## The @nospell{Vandermonde} matrix used to compute the polynomial
## coefficients.
##
## @item R
## Triangular factor R from the QR@tie{}decomposition.
##
## @item C
## The unscaled covariance matrix, formally equal to the inverse of
## @var{x'}*@var{x}, but computed in a way minimizing roundoff error
## propagation.
##
## @item df
## The degrees of freedom.
##
## @item normr
## The norm of the residuals.
## @end table
##
## The second output may be used by @code{polyval} to calculate the statistical
## error limits of the predicted values. In particular, the standard deviation
## of @var{p} coefficients is given by
##
## @code{sqrt (diag (@var{s.C})/@var{s.df}) * @var{s.normr}}.
##
## When the third output, @var{mu}, is present the original data is centered
## and scaled which can improve the numerical stability of the fit. The
## coefficients @var{p} are associated with a polynomial in
##
## @code{@var{xhat} = (@var{x} - @var{mu}(1)) / @var{mu}(2)} @*
## where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}).
##
## Example 1 : logical @var{n} and integer @var{n}
##
## @example
## @group
## f = @@(x) x.^2 + 5; # data-generating function
## x = 0:5;
## y = f (x);
## ## Fit data to polynomial A*x^3 + B*x^1
## p = polyfit (x, y, logical ([1, 0, 1, 0]))
## @result{} p = [ 0.0680, 0, 4.2444, 0 ]
## ## Fit data to polynomial using all terms up to x^3
## p = polyfit (x, y, 3)
## @result{} p = [ -4.9608e-17, 1.0000e+00, -3.3813e-15, 5.0000e+00 ]
## @end group
## @end example
##
## @seealso{polyval, polyaffine, roots, vander, zscore}
## @end deftypefn
function [p, s, mu] = polyfit (x, y, n)
if (nargin < 3)
print_usage ();
endif
y_is_row_vector = isrow (y);
## Reshape x & y into column vectors.
x = x(:);
y = y(:);
nx = numel (x);
ny = numel (y);
if (nx != ny)
error ("polyfit: X and Y must have the same number of points");
endif
if (nargout > 2)
## Center and scale the x values.
mu = [mean(x), std(x)];
x = (x - mu(1)) / mu(2);
endif
## n is the polynomial degree (an input, or deduced from the polymask size)
## m is the effective number of coefficients.
if (islogical (n))
polymask = n(:).'; # force to row vector
n = numel (polymask) - 1;
m = sum (polymask) - 1;
pad_output = true;
else
if (! (isscalar (n) && n >= 0 && ! isinf (n) && n == fix (n)))
error ("polyfit: N must be a non-negative integer");
endif
polymask = true (1, n+1);
m = n;
pad_output = false;
endif
if (m >= nx)
warning ("polyfit: degree of polynomial N is >= number of data points; solution is not unique");
m = nx;
pad_output = true;
## Keep the lowest m entries in polymask
idx = find (polymask);
idx((end-m+1):end) = [];
polymask(idx) = false;
endif
## Construct the Vandermonde matrix.
X = vander (x, n+1);
v = X(:, polymask);
## Solve by QR decomposition.
[q, r, k] = qr (v, 0);
p = r \ (q' * y);
p(k) = p;
if (nargout > 1)
yf = v*p;
if (y_is_row_vector)
s.yf = yf.';
else
s.yf = yf;
endif
s.X = X;
## r.'*r is positive definite if matrix v is of full rank. Invert it by
## cholinv to avoid taking the square root of squared quantities.
## If cholinv fails, then v is rank deficient and not invertible.
try
C = cholinv (r.'*r)(k, k);
catch
C = NaN (m, m);
end_try_catch
if (pad_output)
s.X(:, ! polymask) = 0;
s.R = zeros (rows (r), n+1); s.R(:, polymask) = r;
s.C = zeros (rows (C), n+1); s.C(:, polymask) = C;
else
s.R = r;
s.C = C;
endif
s.df = max (0, nx - m - 1);
s.normr = norm (yf - y);
endif
if (pad_output)
## Zero pad output
q = p;
p = zeros (n+1, 1);
p(polymask) = q;
endif
p = p.'; # Return a row vector.
endfunction
%!shared x
%! x = [-2, -1, 0, 1, 2];
%!assert (polyfit (x, 3*x.^2 + 2*x + 1, 2), [3, 2, 1], 10*eps)
%!assert (polyfit (x, 3*x.^2 + 2*x + 1, logical ([1 1 1])), [3, 2, 1], 10*eps)
%!assert (polyfit (x, x.^2 + 2*x + 3, 3), [0, 1, 2, 3], 10*eps)
%!assert (polyfit (x, x.^2 + 2*x + 3, logical ([0 1 1 1])), [0 1 2 3], 10*eps)
## Test logical input N
%!test
%! x = [0:5];
%! y = 3*x.^3 + 2*x.^2 + 4;
%! [p, s] = polyfit (x, y, logical ([1, 0, 1, 1]));
%! assert (p(2), 0);
%! assert (all (p([1, 3, 4])));
%! assert (s.df, 3);
## Test difficult case where scaling is really needed. This example
## demonstrates the rather poor result which occurs when the dependent
## variable is not normalized properly.
## Also check the usage of 2nd & 3rd output arguments.
%!test
%! warning ("off", "Octave:nearly-singular-matrix", "local");
%! x = [ -1196.4, -1195.2, -1194, -1192.8, -1191.6, -1190.4, -1189.2, -1188, ...
%! -1186.8, -1185.6, -1184.4, -1183.2, -1182];
%! y = [ 315571.7086, 315575.9618, 315579.4195, 315582.6206, 315585.4966, ...
%! 315588.3172, 315590.9326, 315593.5934, 315596.0455, 315598.4201, ...
%! 315600.7143, 315602.9508, 315605.1765 ];
%! [p1, s1] = polyfit (x, y, 10);
%! [p2, s2, mu] = polyfit (x, y, 10);
%! assert (s2.normr < s1.normr);
%!test
%! warning ("off", "Octave:nearly-singular-matrix", "local");
%! x = 1000 + (-5:5);
%! xn = (x - mean (x)) / std (x);
%! pn = ones (1,5);
%! y = polyval (pn, xn);
%! n = numel (pn) - 1;
%! [p, s, mu] = polyfit (x, y, n);
%! [p2, s2] = polyfit (x, y, n);
%! assert (p, pn, s.normr);
%! assert (s.yf, y, s.normr);
%! assert (mu, [mean(x), std(x)]);
%! assert (s.normr/s2.normr < sqrt (eps));
## Complex polynomials
%!test
%! x = 1:4;
%! p0 = [1i, 0, 2i, 4];
%! y = polyval (p0, x);
%! n = numel (p0) - 1;
%! p = polyfit (x, y, n);
%! assert (p, p0, 1000*eps);
## Matrix input
%!test
%! x = [1, 2, 3; 4, 5, 6];
%! y = [0, 0, 1; 1, 0, 0];
%! p = polyfit (x, y, 5);
%! expected = [0, 1, -14, 65, -112, 60] / 12;
%! assert (p, expected, sqrt (eps));
## Orientation of output
%!test
%! x = 0:5;
%! y = x.^4 + 2*x + 5;
%! [p, s] = polyfit (x, y, 3);
%! assert (isrow (s.yf));
%! [p, s] = polyfit (x, y.', 3);
%! assert (iscolumn (s.yf));
## Insufficient data for fit
%!test
%! x = [1, 2];
%! y = [3, 4];
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%! warning ("off", "all");
%! p0 = polyfit (x, y, 4);
%! [p1, s, mu] = polyfit (x, y, 4);
%! unwind_protect_cleanup
%! warning (wstate);
%! end_unwind_protect
%! assert (p0, [0, 0, 0, 1, 2], 10*eps);
%! assert (p1, [0, 0, 0, sqrt(2)/2, 3.5], 10*eps);
%! assert (size (s.X), [2, 5]);
%! assert (s.X(:,1:3), zeros (2,3));
%! assert (size (s.R), [2, 5]);
%! assert (s.R(:,1:3), zeros (2,3));
%! assert (size (s.C), [2, 5]);
%! assert (s.C(:,1:3), zeros (2,3));
%! assert (s.df, 0);
%! assert (mu, [1.5, sqrt(2)/2]);
%!test
%! x = [1, 2, 3];
%! y = 2*x + 1;
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%! warning ("off", "all");
%! p0 = polyfit (x, y, logical ([1, 1, 1, 0 1]));
%! [p1, s, mu] = polyfit (x, y, logical ([1, 1, 1, 0 1]));
%! unwind_protect_cleanup
%! warning (wstate);
%! end_unwind_protect
%! assert (p0, [0, -2/11, 12/11, 0, 23/11], 10*eps);
%! assert (p1, [0, 2, 0, 0, 5], 10*eps);
%! assert (size (s.X), [3, 5]);
%! assert (s.X(:,[1,4]), zeros (3,2));
%! assert (size (s.R), [3, 5]);
%! assert (s.R(:,[1,4]), zeros (3,2));
%! assert (size (s.C), [3, 5]);
%! assert (s.C(:,[1,4]), zeros (3,2));
%! assert (s.df, 0);
%! assert (mu, [2, 1]);
%!test <*57964>
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%! warning ("off", "all");
%! [p, s] = polyfit ([1,2], [3,4], 2);
%! unwind_protect_cleanup
%! warning (wstate);
%! end_unwind_protect
%! assert (size (p), [1, 3]);
%! assert (size (s.X), [2, 3]);
%! assert (s.X(:,1), [0; 0]);
%! assert (size (s.R), [2, 3]);
%! assert (s.R(:,1), [0; 0]);
%! assert (size (s.C), [2, 3]);
%! assert (s.C(:,1), [0; 0]);
## Test input validation
%!error <Invalid call> polyfit ()
%!error <Invalid call> polyfit (1)
%!error <Invalid call> polyfit (1,2)
%!error <X and Y must have the same number of points> polyfit ([1, 2], 1, 1)
%!error <X and Y must have the same number of points> polyfit (1, [1, 2], 1)
%!error <N must be a non-negative integer> polyfit (1, 2, [1,2])
%!error <N must be a non-negative integer> polyfit (1, 2, -1)
%!error <N must be a non-negative integer> polyfit (1, 2, Inf)
%!error <N must be a non-negative integer> polyfit (1, 2, 1.5)
%!test <*57964>
%! fail ("p = polyfit ([1,2], [3,4], 4)", "warning", "solution is not unique");
|