File: ppval.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (146 lines) | stat: -rw-r--r-- 4,394 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{yi} =} ppval (@var{pp}, @var{xi})
## Evaluate the piecewise polynomial structure @var{pp} at the points @var{xi}.
##
## If @var{pp} describes a scalar polynomial function, the result is an array
## of the same shape as @var{xi}.  Otherwise, the size of the result is
## @code{[pp.dim, length(@var{xi})]} if @var{xi} is a vector, or
## @code{[pp.dim, size(@var{xi})]} if it is a multi-dimensional array.
## @seealso{mkpp, unmkpp, spline, pchip}
## @end deftypefn

function yi = ppval (pp, xi)

  if (nargin != 2)
    print_usage ();
  endif
  if (! (isstruct (pp) && isfield (pp, "form") && strcmp (pp.form, "pp")))
    error ("ppval: first argument must be a pp-form structure");
  endif

  ## Extract info.
  [x, P, n, k, d] = unmkpp (pp);

  ## dimension checks
  sxi = size (xi);
  if (isvector (xi))
    xi = xi(:).';
  endif

  nd = length (d);

  ## Determine intervals.
  xn = numel (xi);
  idx = lookup (x, xi, "lr");

  P = reshape (P, [d, n * k]);
  P = shiftdim (P, nd);
  P = reshape (P, [n, k, d]);
  Pidx = P(idx(:), :);  # 2-D matrix size: x = coefs*prod (d), y = prod (sxi)

  if (isvector (xi))
    Pidx = reshape (Pidx, [xn, k, d]);
    Pidx = shiftdim (Pidx, 1);
    dimvec = [d, xn];
  else
    Pidx = reshape (Pidx, [sxi, k, d]);
    Pidx = shiftdim (Pidx, length (sxi));
    dimvec = [d, sxi];
  endif
  ndv = length (dimvec);

  ## Offsets.
  dx = (xi - x(idx))(:)';
  dx = repmat (dx, [prod(d), 1]);
  dx = reshape (dx, dimvec);
  dx = shiftdim (dx, ndv - 1);

  ## Use Horner scheme.
  if (k > 1)
    yi = shiftdim (reshape (Pidx(1,:), dimvec), ndv - 1);
  else
    yi = shiftdim (reshape (Pidx, dimvec), ndv - 1);
  endif

  for i = 2 : k
    yi .*= dx;
    yi += shiftdim (reshape (Pidx(i,:), dimvec), ndv - 1);
  endfor

  ## Adjust shape.
  if ((numel (xi) > 1) || (length (d) == 1))
    yi = reshape (shiftdim (yi, 1), dimvec);
  endif

  if (isvector (xi) && (d == 1))
    yi = reshape (yi, sxi);
  elseif (isfield (pp, "orient") && strcmp (pp.orient, "first"))
    yi = shiftdim (yi, nd);
  endif

  if (d == 1)
    yi = reshape (yi, sxi);
  endif

endfunction


%!shared b, c, pp, pp2, xi, abserr
%! b = 1:3;
%! c = ones (2);
%! pp = mkpp (b, c);
%! abserr = 1e-14;
%! pp2 = mkpp (b, [c;c], 2);
%! xi = [1.1 1.3 1.9 2.1];
%!
%!assert (ppval (pp, 1.1), 1.1, abserr)
%!assert (ppval (pp, 2.1), 1.1, abserr)
%!assert (ppval (pp, xi), [1.1 1.3 1.9 1.1], abserr)
%!assert (ppval (pp, xi.'), [1.1 1.3 1.9 1.1].', abserr)
%!assert (ppval (pp2, 1.1), [1.1;1.1], abserr)
%!assert (ppval (pp2, 2.1), [1.1;1.1], abserr)
%!assert (ppval (pp2, xi), [1.1 1.3 1.9 1.1;1.1 1.3 1.9 1.1], abserr)
%!assert (ppval (pp2, xi'), [1.1 1.3 1.9 1.1;1.1 1.3 1.9 1.1], abserr)
%!assert (size (ppval (pp2, [xi;xi])), [2 2 4])
%!assert (ppval (mkpp([0 1],1), magic (3)), ones(3,3))
%!
%!test
%! breaks = [0, 1, 2, 3];
%! coefs = rand (6, 4);
%! pp = mkpp (breaks, coefs, 2);
%! ret = zeros (2, 4, 2);
%! ret(:,:,1) = ppval (pp, breaks');
%! ret(:,:,2) = ppval (pp, breaks');
%! assert (ppval (pp, [breaks',breaks']), ret);

## Test input validation
%!error <Invalid call> ppval ()
%!error <Invalid call> ppval (1)
%!error <argument must be a pp-form structure> ppval (1,2)
%!error <argument must be a pp-form structure> ppval (struct ("a", 1), 2)
%!error <argument must be a pp-form structure> ppval (struct ("form", "ab"), 2)