1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{yi} =} ppval (@var{pp}, @var{xi})
## Evaluate the piecewise polynomial structure @var{pp} at the points @var{xi}.
##
## If @var{pp} describes a scalar polynomial function, the result is an array
## of the same shape as @var{xi}. Otherwise, the size of the result is
## @code{[pp.dim, length(@var{xi})]} if @var{xi} is a vector, or
## @code{[pp.dim, size(@var{xi})]} if it is a multi-dimensional array.
## @seealso{mkpp, unmkpp, spline, pchip}
## @end deftypefn
function yi = ppval (pp, xi)
if (nargin != 2)
print_usage ();
endif
if (! (isstruct (pp) && isfield (pp, "form") && strcmp (pp.form, "pp")))
error ("ppval: first argument must be a pp-form structure");
endif
## Extract info.
[x, P, n, k, d] = unmkpp (pp);
## dimension checks
sxi = size (xi);
if (isvector (xi))
xi = xi(:).';
endif
nd = length (d);
## Determine intervals.
xn = numel (xi);
idx = lookup (x, xi, "lr");
P = reshape (P, [d, n * k]);
P = shiftdim (P, nd);
P = reshape (P, [n, k, d]);
Pidx = P(idx(:), :); # 2-D matrix size: x = coefs*prod (d), y = prod (sxi)
if (isvector (xi))
Pidx = reshape (Pidx, [xn, k, d]);
Pidx = shiftdim (Pidx, 1);
dimvec = [d, xn];
else
Pidx = reshape (Pidx, [sxi, k, d]);
Pidx = shiftdim (Pidx, length (sxi));
dimvec = [d, sxi];
endif
ndv = length (dimvec);
## Offsets.
dx = (xi - x(idx))(:)';
dx = repmat (dx, [prod(d), 1]);
dx = reshape (dx, dimvec);
dx = shiftdim (dx, ndv - 1);
## Use Horner scheme.
if (k > 1)
yi = shiftdim (reshape (Pidx(1,:), dimvec), ndv - 1);
else
yi = shiftdim (reshape (Pidx, dimvec), ndv - 1);
endif
for i = 2 : k
yi .*= dx;
yi += shiftdim (reshape (Pidx(i,:), dimvec), ndv - 1);
endfor
## Adjust shape.
if ((numel (xi) > 1) || (length (d) == 1))
yi = reshape (shiftdim (yi, 1), dimvec);
endif
if (isvector (xi) && (d == 1))
yi = reshape (yi, sxi);
elseif (isfield (pp, "orient") && strcmp (pp.orient, "first"))
yi = shiftdim (yi, nd);
endif
if (d == 1)
yi = reshape (yi, sxi);
endif
endfunction
%!shared b, c, pp, pp2, xi, abserr
%! b = 1:3;
%! c = ones (2);
%! pp = mkpp (b, c);
%! abserr = 1e-14;
%! pp2 = mkpp (b, [c;c], 2);
%! xi = [1.1 1.3 1.9 2.1];
%!
%!assert (ppval (pp, 1.1), 1.1, abserr)
%!assert (ppval (pp, 2.1), 1.1, abserr)
%!assert (ppval (pp, xi), [1.1 1.3 1.9 1.1], abserr)
%!assert (ppval (pp, xi.'), [1.1 1.3 1.9 1.1].', abserr)
%!assert (ppval (pp2, 1.1), [1.1;1.1], abserr)
%!assert (ppval (pp2, 2.1), [1.1;1.1], abserr)
%!assert (ppval (pp2, xi), [1.1 1.3 1.9 1.1;1.1 1.3 1.9 1.1], abserr)
%!assert (ppval (pp2, xi'), [1.1 1.3 1.9 1.1;1.1 1.3 1.9 1.1], abserr)
%!assert (size (ppval (pp2, [xi;xi])), [2 2 4])
%!assert (ppval (mkpp([0 1],1), magic (3)), ones(3,3))
%!
%!test
%! breaks = [0, 1, 2, 3];
%! coefs = rand (6, 4);
%! pp = mkpp (breaks, coefs, 2);
%! ret = zeros (2, 4, 2);
%! ret(:,:,1) = ppval (pp, breaks');
%! ret(:,:,2) = ppval (pp, breaks');
%! assert (ppval (pp, [breaks',breaks']), ret);
## Test input validation
%!error <Invalid call> ppval ()
%!error <Invalid call> ppval (1)
%!error <argument must be a pp-form structure> ppval (1,2)
%!error <argument must be a pp-form structure> ppval (struct ("a", 1), 2)
%!error <argument must be a pp-form structure> ppval (struct ("form", "ab"), 2)
|