1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
## This function is private because it is maintained by Jonas Lundgren
## separately from Octave. Please do not reformat to match Octave coding
## conventions as that would make it harder to integrate upstream changes.
% Copyright (c) 2010, Jonas Lundgren
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
function pp = __splinefit__(varargin)
%SPLINEFIT Fit a spline to noisy data.
% PP = SPLINEFIT(X,Y,BREAKS) fits a piecewise cubic spline with breaks
% (knots) BREAKS to the noisy data (X,Y). X is a vector and Y is a vector
% or an ND array. If Y is an ND array, then X(j) and Y(:,...,:,j) are
% matched. Use PPVAL to evaluate PP.
%
% PP = SPLINEFIT(X,Y,P) where P is a positive integer interpolates the
% breaks linearly from the sorted locations of X. P is the number of
% spline pieces and P+1 is the number of breaks.
%
% OPTIONAL INPUT
% Argument places 4 to 8 are reserved for optional input.
% These optional arguments can be given in any order:
%
% PP = SPLINEFIT(...,'p') applies periodic boundary conditions to
% the spline. The period length is MAX(BREAKS)-MIN(BREAKS).
%
% PP = SPLINEFIT(...,'r') uses robust fitting to reduce the influence
% from outlying data points. Three iterations of weighted least squares
% are performed. Weights are computed from previous residuals.
%
% PP = SPLINEFIT(...,BETA), where 0 < BETA < 1, sets the robust fitting
% parameter BETA and activates robust fitting ('r' can be omitted).
% Default is BETA = 1/2. BETA close to 0 gives all data equal weighting.
% Increase BETA to reduce the influence from outlying data. BETA close
% to 1 may cause instability or rank deficiency.
%
% PP = SPLINEFIT(...,N) sets the spline order to N. Default is a cubic
% spline with order N = 4. A spline with P pieces has P+N-1 degrees of
% freedom. With periodic boundary conditions the degrees of freedom are
% reduced to P.
%
% PP = SPLINEFIT(...,CON) applies linear constraints to the spline.
% CON is a structure with fields 'xc', 'yc' and 'cc':
% 'xc', x-locations (vector)
% 'yc', y-values (vector or ND array)
% 'cc', coefficients (matrix).
%
% Constraints are linear combinations of derivatives of order 0 to N-2
% according to
%
% cc(1,j)*y(x) + cc(2,j)*y'(x) + ... = yc(:,...,:,j), x = xc(j).
%
% The maximum number of rows for 'cc' is N-1. If omitted or empty 'cc'
% defaults to a single row of ones. Default for 'yc' is a zero array.
%
% EXAMPLES
%
% % Noisy data
% x = linspace(0,2*pi,100);
% y = sin(x) + 0.1*randn(size(x));
% % Breaks
% breaks = [0:5,2*pi];
%
% % Fit a spline of order 5
% pp = splinefit(x,y,breaks,5);
%
% % Fit a spline of order 3 with periodic boundary conditions
% pp = splinefit(x,y,breaks,3,'p');
%
% % Constraints: y(0) = 0, y'(0) = 1 and y(3) + y"(3) = 0
% xc = [0 0 3];
% yc = [0 1 0];
% cc = [1 0 1; 0 1 0; 0 0 1];
% con = struct('xc',xc,'yc',yc,'cc',cc);
%
% % Fit a cubic spline with 8 pieces and constraints
% pp = splinefit(x,y,8,con);
%
% % Fit a spline of order 6 with constraints and periodicity
% pp = splinefit(x,y,breaks,con,6,'p');
%
% See also SPLINE, PPVAL, PPDIFF, PPINT
% 2009-05-06 Original SPLINEFIT.
% 2010-06-23 New version of SPLINEFIT based on B-splines.
% 2010-09-01 Robust fitting scheme added.
% 2010-09-01 Support for data containing NaNs.
% 2011-07-01 Robust fitting parameter added.
% Check number of arguments
narginchk(3,7);
% Check arguments
[x,y,dim,breaks,n,periodic,beta,constr] = arguments(varargin{:});
% Evaluate B-splines
base = splinebase(breaks,n);
pieces = base.pieces;
A = ppval(base,x);
% Bin data
[junk,ibin] = histc(x,[-inf,breaks(2:end-1),inf]); %#ok
% Sparse system matrix
mx = numel(x);
ii = [ibin; ones(n-1,mx)];
ii = cumsum(ii,1);
jj = repmat(1:mx,n,1);
if periodic
ii = mod(ii-1,pieces) + 1;
A = sparse(ii,jj,A,pieces,mx);
else
A = sparse(ii,jj,A,pieces+n-1,mx);
end
% Don't use the sparse solver for small problems
if pieces < 20*n/log(1.7*n)
A = full(A);
end
% Solve
if isempty(constr)
% Solve Min norm(u*A-y)
u = lsqsolve(A,y,beta);
else
% Evaluate constraints
B = evalcon(base,constr,periodic);
% Solve constraints
[Z,u0] = solvecon(B,constr);
% Solve Min norm(u*A-y), subject to u*B = yc
y -= u0*A;
A = Z*A;
v = lsqsolve(A,y,beta);
u = u0 + v*Z;
end
% Periodic expansion of solution
if periodic
jj = mod(0:pieces+n-2,pieces) + 1;
u = u(:,jj);
end
% Compute polynomial coefficients
ii = [repmat(1:pieces,1,n); ones(n-1,n*pieces)];
ii = cumsum(ii,1);
jj = repmat(1:n*pieces,n,1);
C = sparse(ii,jj,base.coefs,pieces+n-1,n*pieces);
coefs = u*C;
coefs = reshape(coefs,[],n);
% Make piecewise polynomial
pp = mkpp(breaks,coefs,dim);
%--------------------------------------------------------------------------
function [x,y,dim,breaks,n,periodic,beta,constr] = arguments(varargin)
%ARGUMENTS Lengthy input checking
% x Noisy data x-locations (1 x mx)
% y Noisy data y-values (prod(dim) x mx)
% dim Leading dimensions of y
% breaks Breaks (1 x (pieces+1))
% n Spline order
% periodic True if periodic boundary conditions
% beta Robust fitting parameter, no robust fitting if beta = 0
% constr Constraint structure
% constr.xc x-locations (1 x nx)
% constr.yc y-values (prod(dim) x nx)
% constr.cc Coefficients (?? x nx)
% Reshape x-data
x = varargin{1};
mx = numel(x);
x = reshape(x,1,mx);
% Remove trailing singleton dimensions from y
y = varargin{2};
dim = size(y);
while numel(dim) > 1 && dim(end) == 1
dim(end) = [];
end
my = dim(end);
% Leading dimensions of y
if numel(dim) > 1
dim(end) = [];
else
dim = 1;
end
% Reshape y-data
pdim = prod(dim);
y = reshape(y,pdim,my);
% Check data size
if mx ~= my
mess = 'Last dimension of array y must equal length of vector x.';
error('arguments:datasize',mess)
end
% Treat NaNs in x-data
inan = find(isnan(x));
if ~isempty(inan)
x(inan) = [];
y(:,inan) = [];
mess = 'All data points with NaN as x-location will be ignored.';
warning('arguments:nanx',mess)
end
% Treat NaNs in y-data
inan = find(any(isnan(y),1));
if ~isempty(inan)
x(inan) = [];
y(:,inan) = [];
mess = 'All data points with NaN in their y-value will be ignored.';
warning('arguments:nany',mess)
end
% Check number of data points
mx = numel(x);
if mx == 0
error('arguments:nodata','There must be at least one data point.')
end
% Sort data
if any(diff(x) < 0)
[x,isort] = sort(x);
y = y(:,isort);
end
% Breaks
if isscalar(varargin{3})
% Number of pieces
p = varargin{3};
if ~isreal(p) || ~isfinite(p) || p < 1 || fix(p) < p
mess = 'Argument #3 must be a vector or a positive integer.';
error('arguments:breaks1',mess)
end
if x(1) < x(end)
% Interpolate breaks linearly from x-data
dx = diff(x);
ibreaks = linspace(1,mx,p+1);
[junk,ibin] = histc(ibreaks,[0,2:mx-1,mx+1]); %#ok
breaks = x(ibin) + dx(ibin).*(ibreaks-ibin);
else
breaks = x(1) + linspace(0,1,p+1);
end
else
% Vector of breaks
breaks = reshape(varargin{3},1,[]);
if isempty(breaks) || min(breaks) == max(breaks)
mess = 'At least two unique breaks are required.';
error('arguments:breaks2',mess);
end
end
% Unique breaks
if any(diff(breaks) <= 0)
breaks = unique(breaks);
end
% Optional input defaults
n = 4; % Cubic splines
periodic = false; % No periodic boundaries
robust = false; % No robust fitting scheme
beta = 0.5; % Robust fitting parameter
constr = []; % No constraints
% Loop over optional arguments
for k = 4:nargin
a = varargin{k};
if ischar(a) && isscalar(a) && lower(a) == 'p'
% Periodic conditions
periodic = true;
elseif ischar(a) && isscalar(a) && lower(a) == 'r'
% Robust fitting scheme
robust = true;
elseif isreal(a) && isscalar(a) && isfinite(a) && a > 0 && a < 1
% Robust fitting parameter
beta = a;
robust = true;
elseif isreal(a) && isscalar(a) && isfinite(a) && a > 0 && fix(a) == a
% Spline order
n = a;
elseif isstruct(a) && isscalar(a)
% Constraint structure
constr = a;
else
error('arguments:nonsense','Failed to interpret argument #%d.',k)
end
end
% No robust fitting
if ~robust
beta = 0;
end
% Check exterior data
h = diff(breaks);
xlim1 = breaks(1) - 0.01*h(1);
xlim2 = breaks(end) + 0.01*h(end);
if x(1) < xlim1 || x(end) > xlim2
if periodic
% Move data inside domain
P = breaks(end) - breaks(1);
x = mod(x-breaks(1),P) + breaks(1);
% Sort
[x,isort] = sort(x);
y = y(:,isort);
else
mess = 'Some data points are outside the spline domain.';
warning('arguments:exteriordata',mess)
end
end
% Return
if isempty(constr)
return;
end
% Unpack constraints
xc = [];
yc = [];
cc = [];
names = fieldnames(constr);
for k = 1:numel(names)
switch names{k}
case {'xc'}
xc = constr.xc;
case {'yc'}
yc = constr.yc;
case {'cc'}
cc = constr.cc;
otherwise
mess = 'Unknown field ''%s'' in constraint structure.';
warning('arguments:unknownfield',mess,names{k})
end
end
% Check xc
if isempty(xc)
mess = 'Constraints contains no x-locations.';
error('arguments:emptyxc',mess)
else
nx = numel(xc);
xc = reshape(xc,1,nx);
end
% Check yc
if isempty(yc)
% Zero array
yc = zeros(pdim,nx);
elseif numel(yc) == 1
% Constant array
yc = zeros(pdim,nx) + yc;
elseif numel(yc) ~= pdim*nx
% Malformed array
error('arguments:ycsize','Cannot reshape yc to size %dx%d.',pdim,nx)
else
% Reshape array
yc = reshape(yc,pdim,nx);
end
% Check cc
if isempty(cc)
cc = ones(size(xc));
elseif numel(size(cc)) ~= 2
error('arguments:ccsize1','Constraint coefficients cc must be 2-D.')
elseif size(cc,2) ~= nx
mess = 'Last dimension of cc must equal length of xc.';
error('arguments:ccsize2',mess)
end
% Check high order derivatives
if size(cc,1) >= n
if any(any(cc(n:end,:)))
mess = 'Constraints involve derivatives of order %d or larger.';
error('arguments:difforder',mess,n-1)
end
cc = cc(1:n-1,:);
end
% Check exterior constraints
if min(xc) < xlim1 || max(xc) > xlim2
if periodic
% Move constraints inside domain
P = breaks(end) - breaks(1);
xc = mod(xc-breaks(1),P) + breaks(1);
else
mess = 'Some constraints are outside the spline domain.';
warning('arguments:exteriorconstr',mess)
end
end
% Pack constraints
constr = struct('xc',xc,'yc',yc,'cc',cc);
%--------------------------------------------------------------------------
function pp = splinebase(breaks,n)
%SPLINEBASE Generate B-spline base PP of order N for breaks BREAKS
breaks = breaks(:); % Breaks
breaks0 = breaks'; % Initial breaks
h = diff(breaks); % Spacing
pieces = numel(h); % Number of pieces
deg = n - 1; % Polynomial degree
% Extend breaks periodically
if deg > 0
if deg <= pieces
hcopy = h;
else
hcopy = repmat(h,ceil(deg/pieces),1);
end
% to the left
hl = hcopy(end:-1:end-deg+1);
bl = breaks(1) - cumsum(hl);
% and to the right
hr = hcopy(1:deg);
br = breaks(end) + cumsum(hr);
% Add breaks
breaks = [bl(deg:-1:1); breaks; br];
h = diff(breaks);
pieces = numel(h);
end
% Initiate polynomial coefficients
coefs = zeros(n*pieces,n);
coefs(1:n:end,1) = 1;
% Expand h
ii = [1:pieces; ones(deg,pieces)];
ii = cumsum(ii,1);
ii = min(ii,pieces);
H = h(ii(:));
% Recursive generation of B-splines
for k = 2:n
% Antiderivatives of splines
for j = 1:k-1
coefs(:,j) = coefs(:,j).*H/(k-j);
end
Q = sum(coefs,2);
Q = reshape(Q,n,pieces);
Q = cumsum(Q,1);
c0 = [zeros(1,pieces); Q(1:deg,:)];
coefs(:,k) = c0(:);
% Normalize antiderivatives by max value
fmax = repmat(Q(n,:),n,1);
fmax = fmax(:);
for j = 1:k
coefs(:,j) = coefs(:,j)./fmax;
end
% Diff of adjacent antiderivatives
coefs(1:end-deg,1:k) = coefs(1:end-deg,1:k) - coefs(n:end,1:k);
coefs(1:n:end,k) = 0;
end
% Scale coefficients
scale = ones(size(H));
for k = 1:n-1
scale = scale./H;
coefs(:,n-k) = scale.*coefs(:,n-k);
end
% Reduce number of pieces
pieces -= 2*deg;
% Sort coefficients by interval number
ii = [n*(1:pieces); deg*ones(deg,pieces)];
ii = cumsum(ii,1);
coefs = coefs(ii(:),:);
% Make piecewise polynomial
pp = mkpp(breaks0,coefs,n);
%--------------------------------------------------------------------------
function B = evalcon(base,constr,periodic)
%EVALCON Evaluate linear constraints
% Unpack structures
breaks = base.breaks;
pieces = base.pieces;
n = base.order;
xc = constr.xc;
cc = constr.cc;
% Bin data
[junk,ibin] = histc(xc,[-inf,breaks(2:end-1),inf]); %#ok
% Evaluate constraints
nx = numel(xc);
B0 = zeros(n,nx);
for k = 1:size(cc,1)
if any(cc(k,:))
B0 += repmat(cc(k,:),n,1).*ppval(base,xc);
end
% Differentiate base
coefs = base.coefs(:,1:n-k);
for j = 1:n-k-1
coefs(:,j) = (n-k-j+1)*coefs(:,j);
end
base.coefs = coefs;
base.order = n-k;
end
% Sparse output
ii = [ibin; ones(n-1,nx)];
ii = cumsum(ii,1);
jj = repmat(1:nx,n,1);
if periodic
ii = mod(ii-1,pieces) + 1;
B = sparse(ii,jj,B0,pieces,nx);
else
B = sparse(ii,jj,B0,pieces+n-1,nx);
end
%--------------------------------------------------------------------------
function [Z,u0] = solvecon(B,constr)
%SOLVECON Find a particular solution u0 and null space Z (Z*B = 0)
% for constraint equation u*B = yc.
yc = constr.yc;
tol = 1000*eps;
% Remove blank rows
ii = any(B,2);
B2 = full(B(ii,:));
% Null space of B2
if isempty(B2)
Z2 = [];
else
% QR decomposition with column permutation
[Q,R,dummy] = qr(B2); %#ok
R = abs(R);
jj = all(R < R(1)*tol, 2);
Z2 = Q(:,jj)';
end
% Sizes
[m,ncon] = size(B);
m2 = size(B2,1);
nz = size(Z2,1);
% Sparse null space of B
Z = sparse(nz+1:nz+m-m2,find(~ii),1,nz+m-m2,m);
Z(1:nz,ii) = Z2;
% Warning rank deficient
if nz + ncon > m2
mess = 'Rank deficient constraints, rank = %d.';
warning('solvecon:deficient',mess,m2-nz);
end
% Particular solution
u0 = zeros(size(yc,1),m);
if any(yc(:))
% Non-homogeneous case
u0(:,ii) = yc/B2;
% Check solution
if norm(u0*B - yc,'fro') > norm(yc,'fro')*tol
mess = 'Inconsistent constraints. No solution within tolerance.';
error('solvecon:inconsistent',mess)
end
end
%--------------------------------------------------------------------------
function u = lsqsolve(A,y,beta)
%LSQSOLVE Solve Min norm(u*A-y)
% Avoid sparse-complex limitations
if issparse(A) && ~isreal(y)
A = full(A);
end
% Solution
u = y/A;
% Robust fitting
if beta > 0
[m,n] = size(y);
alpha = 0.5*beta/(1-beta)/m;
for k = 1:3
% Residual
r = u*A - y;
rr = r.*conj(r);
rrmean = sum(rr,2)/n;
rrmean(~rrmean) = 1;
rrhat = (alpha./rrmean)'*rr;
% Weights
w = exp(-rrhat);
spw = spdiags(w',0,n,n);
% Solve weighted problem
u = (y*spw)/(A*spw);
end
end
|