File: residue.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (425 lines) | stat: -rw-r--r-- 11,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{r}, @var{p}, @var{k}, @var{e}] =} residue (@var{b}, @var{a})
## @deftypefnx {} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k})
## @deftypefnx {} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e})
## The first calling form computes the partial fraction expansion for the
## quotient of the polynomials, @var{b} and @var{a}.
##
## The quotient is defined as
## @tex
## $$
## {B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m}
##   + \sum_{i=1}^N k_i s^{N-i}.
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## B(s)    M       r(m)        N
## ---- = SUM ------------- + SUM k(i)*s^(N-i)
## A(s)   m=1 (s-p(m))^e(m)   i=1
## @end group
## @end example
##
## @end ifnottex
## @noindent
## where @math{M} is the number of poles (the length of the @var{r}, @var{p},
## and @var{e}), the @var{k} vector is a polynomial of order @math{N-1}
## representing the direct contribution, and the @var{e} vector specifies the
## multiplicity of the m-th residue's pole.
##
## For example,
##
## @example
## @group
## b = [1, 1, 1];
## a = [1, -5, 8, -4];
## [r, p, k, e] = residue (b, a)
##    @result{} r = [-2; 7; 3]
##    @result{} p = [2; 2; 1]
##    @result{} k = [](0x0)
##    @result{} e = [1; 2; 1]
## @end group
## @end example
##
## @noindent
## which represents the following partial fraction expansion
## @tex
## $$
## {s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##         s^2 + s + 1       -2        7        3
##    ------------------- = ----- + ------- + -----
##    s^3 - 5s^2 + 8s - 4   (s-2)   (s-2)^2   (s-1)
## @end group
## @end example
##
## @end ifnottex
##
## The second calling form performs the inverse operation and computes the
## reconstituted quotient of polynomials, @var{b}(s)/@var{a}(s), from the
## partial fraction expansion; represented by the residues, poles, and a direct
## polynomial specified by @var{r}, @var{p} and @var{k}, and the pole
## multiplicity @var{e}.
##
## If the multiplicity, @var{e}, is not explicitly specified the multiplicity
## is determined by the function @code{mpoles}.
##
## For example:
##
## @example
## @group
## r = [-2; 7; 3];
## p = [2; 2; 1];
## k = [1, 0];
## [b, a] = residue (r, p, k)
##    @result{} b = [1, -5, 9, -3, 1]
##    @result{} a = [1, -5, 8, -4]
##
## where mpoles is used to determine e = [1; 2; 1]
## @end group
## @end example
##
## Alternatively the multiplicity may be defined explicitly, for example,
##
## @example
## @group
## r = [7; 3; -2];
## p = [2; 1; 2];
## k = [1, 0];
## e = [2; 1; 1];
## [b, a] = residue (r, p, k, e)
##    @result{} b = [1, -5, 9, -3, 1]
##    @result{} a = [1, -5, 8, -4]
## @end group
## @end example
##
## @noindent
## which represents the following partial fraction expansion
## @tex
## $$
## {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##  -2        7        3         s^4 - 5s^3 + 9s^2 - 3s + 1
## ----- + ------- + ----- + s = --------------------------
## (s-2)   (s-2)^2   (s-1)          s^3 - 5s^2 + 8s - 4
## @end group
## @end example
##
## @end ifnottex
## @seealso{mpoles, poly, roots, conv, deconv}
## @end deftypefn

function [r, p, k, e] = residue (b, a, varargin)

  if (nargin < 2 || nargin > 4)
    print_usage ();
  endif

  tol = .001;

  if (nargin >= 3)
    if (nargin >= 4)
      e = varargin{2};
    else
      e = [];
    endif
    ## The inputs are the residue, pole, and direct part.
    ## Solve for the corresponding numerator and denominator polynomials.
    [r, p] = rresidue (b, a, varargin{1}, tol, e);
    return;
  endif

  ## Make sure both polynomials are in reduced form, and scaled.
  a = polyreduce (a);
  b = polyreduce (b);

  b /= a(1);
  a /= a(1);

  la = length (a);
  lb = length (b);

  ## Handle special cases here.
  if (la == 0 || lb == 0)
    k = r = p = e = [];
    return;
  elseif (la == 1)
    k = b / a;
    r = p = e = [];
    return;
  endif

  ## Find the poles.
  p = roots (a);
  lp = length (p);

  ## Sort poles so that multiplicity loop will work.
  [e, idx] = mpoles (p, tol, 1);
  p = p(idx);

  ## For each group of pole multiplicity, set the value of each
  ## pole to the average of the group.  This reduces the error in
  ## the resulting poles.
  p_group = cumsum (e == 1);
  for ng = 1:p_group(end)
    m = find (p_group == ng);
    p(m) = mean (p(m));
  endfor

  ## Find the direct term if there is one.
  if (lb >= la)
    ## Also return the reduced numerator.
    [k, b] = deconv (b, a);
    lb = length (b);
  else
    k = [];
  endif

  ## Determine if the poles are (effectively) zero.
  small = max (abs (p));
  if (isa (a, "single") || isa (b, "single"))
    small = max ([small, 1]) * eps ("single") * 1e4 * (1 + numel (p))^2;
  else
    small = max ([small, 1]) * eps * 1e4 * (1 + numel (p))^2;
  endif
  p(abs (p) < small) = 0;

  ## Determine if the poles are (effectively) real, or imaginary.
  idx = (abs (imag (p)) < small);
  p(idx) = real (p(idx));
  idx = (abs (real (p)) < small);
  p(idx) = 1i * imag (p(idx));

  ## The remainder determines the residues.  The case of one pole is trivial.
  if (lp == 1)
    r = polyval (b, p);
    return;
  endif

  ## Determine the order of the denominator and remaining numerator.
  ## With the direct term removed, the potential order of the numerator
  ## is one less than the order of the denominator.
  aorder = numel (a) - 1;
  border = aorder - 1;

  ## Construct a system of equations relating the individual
  ## contributions from each residue to the complete numerator.
  A = zeros (border+1, border+1);
  B = prepad (reshape (b, [numel(b), 1]), border+1, 0);
  for ip = 1:numel (p)
    ri = zeros (size (p));
    ri(ip) = 1;
    A(:,ip) = prepad (rresidue (ri, p, [], tol), border+1, 0).';
  endfor

  ## Solve for the residues.
  ## FIXME: Use a pre-conditioner d to make A \ B work better (bug #53869).
  ##        It would be better to construct A and B so they are not close to
  ##        singular in the first place.
  d = max (abs (A), [], 2);
  r = (diag (d) \ A) \ (B ./ d);

endfunction

## Reconstitute the numerator and denominator polynomials
## from the residues, poles, and direct term.
function [pnum, pden, e] = rresidue (r, p, k = [], tol = [], e = [])

  if (! isempty (e))
    idx = 1:numel (p);
  else
    [e, idx] = mpoles (p, tol, 0);
    p = p(idx);
    r = r(idx);
  endif

  idx = 1:numel (p);
  for n = idx
    pn = [1, -p(n)];
    if (n == 1)
      pden = pn;
    else
      pden = conv (pden, pn);
    endif
  endfor

  ## D is the order of the denominator
  ## K is the order of the direct polynomial
  ## N is the order of the resulting numerator
  ## pnum(1:(N+1)) is the numerator's polynomial
  ## pden(1:(D+1)) is the denominator's polynomial
  ## pm is the multiple pole for the nth residue
  ## pn is the numerator contribution for the nth residue

  D = numel (pden) - 1;
  K = numel (k) - 1;
  N = K + D;
  pnum = zeros (1, N+1);
  for n = idx(abs (r) > 0)
    p1 = [1, -p(n)];
    pn = 1;
    for j = 1:n - 1
      pn = conv (pn, [1, -p(j)]);
    endfor
    for j = n + 1:numel (p)
      pn = conv (pn, [1, -p(j)]);
    endfor
    for j = 1:e(n) - 1
      pn = deconv (pn, p1);
    endfor
    pn = r(n) * pn;
    pnum += prepad (pn, N+1, 0, 2);
  endfor

  ## Add the direct term.
  if (numel (k))
    pnum += conv (pden, k);
  endif

  pnum = polyreduce (pnum);
  pden = polyreduce (pden);

endfunction


%!test
%! b = [1, 1, 1];
%! a = [1, -5, 8, -4];
%! [r, p, k, e] = residue (b, a);
%! assert (r, [-2; 7; 3], 1e-12);
%! assert (p, [2; 2; 1], 1e-12);
%! assert (isempty (k));
%! assert (e, [1; 2; 1]);
%! k = [1 0];
%! b = conv (k, a) + prepad (b, numel (k) + numel (a) - 1, 0);
%! a = a;
%! [br, ar] = residue (r, p, k);
%! assert (br, b, 1e-12);
%! assert (ar, a, 1e-12);
%! [br, ar] = residue (r, p, k, e);
%! assert (br, b, 1e-12);
%! assert (ar, a, 1e-12);

%!test
%! b = [1, 0, 1];
%! a = [1, 0, 18, 0, 81];
%! [r, p, k, e] = residue (b, a);
%! r1 = [-5i; 12; +5i; 12]/54;
%! p1 = [+3i; +3i; -3i; -3i];
%! assert (r, r1, 1e-12);
%! assert (p, p1, 1e-12);
%! assert (isempty (k));
%! assert (e, [1; 2; 1; 2]);
%! [br, ar] = residue (r, p, k);
%! assert (br, b, 1e-12);
%! assert (ar, a, 1e-12);

%!test
%! r = [7; 3; -2];
%! p = [2; 1; 2];
%! k = [1 0];
%! e = [2; 1; 1];
%! [b, a] = residue (r, p, k, e);
%! assert (b, [1, -5, 9, -3, 1], 1e-12);
%! assert (a, [1, -5, 8, -4], 1e-12);
%! [rr, pr, kr, er] = residue (b, a);
%! [~, m] = mpoles (rr);
%! [~, n] = mpoles (r);
%! assert (rr(m), r(n), 1e-12);
%! assert (pr(m), p(n), 1e-12);
%! assert (kr, k, 1e-12);
%! assert (er(m), e(n), 1e-12);

%!test
%! b = [1];
%! a = [1, 10, 25];
%! [r, p, k, e] = residue (b, a);
%! r1 = [0; 1];
%! p1 = [-5; -5];
%! assert (r, r1, 1e-12);
%! assert (p, p1, 1e-12);
%! assert (isempty (k));
%! assert (e, [1; 2]);
%! [br, ar] = residue (r, p, k);
%! assert (br, b, 1e-12);
%! assert (ar, a, 1e-12);

## The following test is due to Bernard Grung
%!test <*34266>
%! z1 =  7.0372976777e6;
%! p1 = -3.1415926536e9;
%! p2 = -4.9964813512e8;
%! r1 = -(1 + z1/p1)/(1 - p1/p2)/p2/p1;
%! r2 = -(1 + z1/p2)/(1 - p2/p1)/p2/p1;
%! r3 = (1 + (p2 + p1)/p2/p1*z1)/p2/p1;
%! r4 = z1/p2/p1;
%! r = [r1; r2; r3; r4];
%! p = [p1; p2; 0; 0];
%! k = [];
%! e = [1; 1; 1; 2];
%! b = [1, z1];
%! a = [1, -(p1 + p2), p1*p2, 0, 0];
%! [br, ar] = residue (r, p, k, e);
%! assert (br, [0,0,b], 1e-7);
%! assert (ar, a, 1e-8);

%!test <*49291>
%! rf = [1e3, 2e3, 1e3, 2e3];
%! cf = [316.2e-9, 50e-9, 31.6e-9, 5e-9];
%! [num, den] = residue (1./cf,-1./(rf.*cf),0);
%! assert (numel (num), 4);
%! assert (numel (den), 5);
%! assert (den(1), 1);

%!test <*51148>
%! r = [1.0000e+18, 3.5714e+12, 2.2222e+11, 2.1739e+10];
%! pin = [-1.9231e+15, -1.6234e+09, -4.1152e+07, -1.8116e+06];
%! k = 0;
%! [p, q] = residue (r, pin, k);
%! assert (p(4), 4.6828e+42, -1e-5);

%!test <*60384>
%! B = [1315.789473684211];
%! A = [1, 1.100000536842105e+04, 1.703789473684211e+03, 0];
%! poles1 = roots (A);
%! [r, p, k, e] = residue (B, A);
%! [B1, A1] = residue (r, p, k, e);
%! assert (B, B1);
%! assert (A, A1);