File: roots.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (141 lines) | stat: -rw-r--r-- 3,369 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{r} =} roots (@var{c})
##
## Compute the roots of the polynomial @var{c}.
##
## For a vector @var{c} with @math{N} components, return the roots of the
## polynomial
## @tex
## $$
## c_1 x^{N-1} + \cdots + c_{N-1} x + c_N.
## $$
## @end tex
## @ifnottex
##
## @example
## c(1) * x^(N-1) + @dots{} + c(N-1) * x + c(N)
## @end example
##
## @end ifnottex
##
## As an example, the following code finds the roots of the quadratic
## polynomial
## @tex
## $$ p(x) = x^2 - 5. $$
## @end tex
## @ifnottex
##
## @example
## p(x) = x^2 - 5.
## @end example
##
## @end ifnottex
##
## @example
## @group
## c = [1, 0, -5];
## roots (c)
## @result{}  2.2361
## @result{} -2.2361
## @end group
## @end example
##
## Note that the true result is
## @tex
## $\pm \sqrt{5}$
## @end tex
## @ifnottex
## @math{+/- sqrt(5)}
## @end ifnottex
## which is roughly
## @tex
## $\pm 2.2361$.
## @end tex
## @ifnottex
## @math{+/- 2.2361}.
## @end ifnottex
## @seealso{poly, compan, fzero}
## @end deftypefn

function r = roots (c)

  if (nargin < 1 || (! isvector (c) && ! isempty (c)))
    print_usage ();
  elseif (any (! isfinite (c)))
    error ("roots: inputs must not contain Inf or NaN");
  endif

  c = c(:);
  n = numel (c);

  ## If c = [ 0 ... 0 c(k+1) ... c(k+l) 0 ... 0 ],
  ## we can remove the leading k zeros,
  ## and n - k - l roots of the polynomial are zero.

  c_max = max (abs (c));
  if (isempty (c) || c_max == 0)
    r = [];
    return;
  endif

  f = find (c ./ c_max);
  m = numel (f);

  c = c(f(1):f(m));
  l = numel (c);
  if (l > 1)
    A = diag (ones (1, l-2), -1);
    A(1,:) = -c(2:l) ./ c(1);
    r = eig (A);
    if (f(m) < n)
      r = [r; zeros(n - f(m), 1)];
    endif
  else
    r = zeros (n - f(m), 1);
  endif

endfunction


%!test
%! p = [poly([3 3 3 3]), 0 0 0 0];
%! r = sort (roots (p));
%! assert (r, [0; 0; 0; 0; 3; 3; 3; 3], 0.001);

%!assert (isempty (roots ([])))
%!assert (isempty (roots ([0 0])))
%!assert (isempty (roots (1)))
%!assert (roots ([1, -6, 11, -6]), [3; 2; 1], sqrt (eps))

%!assert (roots ([1e-200, -1e200, 1]), 1e-200)
%!assert (roots ([1e-200, -1e200 * 1i, 1]), -1e-200 * 1i)

%!error <Invalid call> roots ()
%!error roots ([1, 2; 3, 4])
%!error <inputs must not contain Inf or NaN> roots ([1 Inf 1])
%!error <inputs must not contain Inf or NaN> roots ([1 NaN 1])