1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{pp} =} spline (@var{x}, @var{y})
## @deftypefnx {} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi})
## Return the cubic spline interpolant of points @var{x} and @var{y}.
##
## When called with two arguments, return the piecewise polynomial @var{pp}
## that may be used with @code{ppval} to evaluate the polynomial at specific
## points.
##
## When called with a third input argument, @code{spline} evaluates the spline
## at the points @var{xi}. The third calling form
## @code{spline (@var{x}, @var{y}, @var{xi})} is equivalent to
## @code{ppval (spline (@var{x}, @var{y}), @var{xi})}.
##
## The variable @var{x} must be a vector of length @var{n}.
##
## @var{y} can be either a vector or array. If @var{y} is a vector it must
## have a length of either @var{n} or @code{@var{n} + 2}. If the length of
## @var{y} is @var{n}, then the @qcode{"not-a-knot"} end condition is used.
## If the length of @var{y} is @code{@var{n} + 2}, then the first and last
## values of the vector @var{y} are the values of the first derivative of the
## cubic spline at the endpoints.
##
## If @var{y} is an array, then the size of @var{y} must have the form
## @tex
## $$[s_1, s_2, \cdots, s_k, n]$$
## @end tex
## @ifnottex
## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]}
## @end ifnottex
## or
## @tex
## $$[s_1, s_2, \cdots, s_k, n + 2].$$
## @end tex
## @ifnottex
## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}.
## @end ifnottex
## The array is reshaped internally to a matrix where the leading
## dimension is given by
## @tex
## $$s_1 s_2 \cdots s_k$$
## @end tex
## @ifnottex
## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}}
## @end ifnottex
## and each row of this matrix is then treated separately. Note that this is
## exactly the opposite of @code{interp1} but is done for @sc{matlab}
## compatibility.
##
## @seealso{pchip, ppval, mkpp, unmkpp}
## @end deftypefn
## This code is based on csape.m from Octave Forge, but has been
## modified to use the sparse solver code in octave that itself allows
## special casing of tri-diagonal matrices, modified for NDArrays and
## for the treatment of vectors y 2 elements longer than x as complete
## splines.
function ret = spline (x, y, xi)
x = x(:);
n = length (x);
if (n < 2)
error ("spline: requires at least 2 points");
endif
## Check the size and shape of y
ndy = ndims (y);
szy = size (y);
if (ndy == 2 && (any (szy == n) || any (szy == n+2)))
if (szy(2) == n || szy(2) == n+2)
a = y.';
else
a = y;
szy = szy([2 1]);
endif
else
a = shiftdim (reshape (y, [prod(szy(1:end-1)), szy(end)]), 1);
endif
for k = (1:columns (a))(any (isnan (a)))
ok = ! isnan (a(:,k));
a(! ok,k) = spline (x(ok), a(ok,k), x(! ok));
endfor
complete = false;
if (rows (a) == n + 2)
complete = true;
dfs = a(1,:);
dfe = a(end,:);
a = a(2:end-1,:);
endif
if (! issorted (x))
[x, idx] = sort (x);
a = a(idx,:);
endif
b = c = zeros (size (a));
h = diff (x);
idx = ones (columns (a), 1);
if (complete)
if (n == 2)
d = (dfs + dfe) / (x(2) - x(1)) ^ 2 + ...
2 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 3;
c = (-2 * dfs - dfe) / (x(2) - x(1)) - ...
3 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 2;
b = dfs;
a = a(1,:);
else
g(1,:) = (a(2,:) - a(1,:)) / h(1) - dfs;
g(2:n-1,:) = (a(3:n,:) - a(2:n-1,:)) ./ h(2:n-1) - ...
(a(2:n-1,:) - a(1:n-2,:)) ./ h(1:n-2);
g(n,:) = dfe - (a(n,:) - a(n-1,:)) / h(n-1);
c = spdiags ([[h/6;0],[h(1)/3;(h(1:n-2)+h(2:n-1))/3;h(n-1)/3],[0;h/6]],...
[-1,0,1],n,n) \ (g / 2);
b = diff (a) ./ h(1:n-1, idx) ...
- h(1:n-1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:));
d = diff (c) ./ (3 * h(1:n-1, idx));
d = d.'(:);
c = c(1:n-1,:).'(:);
b = b.'(:);
a = a(1:n-1,:).'(:);
endif
else
if (n == 2)
b = (a(2,:) - a(1,:)) / (x(2) - x(1));
a = a(1,:);
d = [];
c = [];
elseif (n == 3)
n = 2;
c = (a(1,:) - a(3,:)) / ((x(3) - x(1)) * (x(2) - x(3))) ...
+ (a(2,:) - a(1,:)) / ((x(2) - x(1)) * (x(2) - x(3)));
b = (a(2,:) - a(1,:)) * (x(3) - x(1)) ...
/ ((x(2) - x(1)) * (x(3) - x(2))) ...
+ (a(1,:) - a(3,:)) * (x(2) - x(1)) ...
/ ((x(3) - x(1)) * (x(3) - x(2)));
a = a(1,:);
d = [];
x = [min(x), max(x)];
else
g = zeros (n-2, columns (a));
g(1,:) = 3 / (h(1) + h(2)) ...
* (a(3,:) - a(2,:) - h(2) / h(1) * (a(2,:) - a(1,:)));
g(n-2,:) = 3 / (h(n-1) + h(n-2)) ...
* (h(n-2) / h(n-1) * (a(n,:) - a(n-1,:)) - (a(n-1,:) - a(n-2,:)));
if (n > 4)
g(2:n - 3,:) = 3 * diff (a(3:n-1,:)) ./ h(3:n-2,idx) ...
- 3 * diff (a(2:n-2,:)) ./ h(2:n - 3,idx);
dg = 2 * (h(1:n-2) + h(2:n-1));
dg(1) = dg(1) - h(1);
dg(n-2) = dg(n-2) - h(n-1);
ldg = udg = h(2:n-2);
udg(1) = udg(1) - h(1);
ldg(n - 3) = ldg(n-3) - h(n-1);
c(2:n-1,:) = spdiags ([[ldg(:); 0], dg, [0; udg(:)]],
[-1, 0, 1], n-2, n-2) \ g;
elseif (n == 4)
dg = [h(1) + 2 * h(2); 2 * h(2) + h(3)];
ldg = h(2) - h(3);
udg = h(2) - h(1);
c(2:n-1,:) = spdiags ([[ldg(:);0], dg, [0; udg(:)]],
[-1, 0, 1], n-2, n-2) \ g;
endif
c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:));
c(n,:) = c(n-1,:) + h(n-1) / h(n-2) * (c(n-1,:) - c(n-2,:));
b = diff (a) ./ h(1:n-1, idx) ...
- h(1:n-1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:));
d = diff (c) ./ (3 * h(1:n-1, idx));
d = d.'(:);
c = c(1:n-1,:).'(:);
b = b.'(:);
a = a(1:n-1,:).'(:);
endif
endif
ret = mkpp (x, cat (2, d, c, b, a), szy(1:end-1));
if (nargin == 3)
ret = ppval (ret, xi);
endif
endfunction
%!demo
%! x = 0:10; y = sin (x);
%! xspline = 0:0.1:10; yspline = spline (x,y,xspline);
%! title ("spline fit to points from sin (x)");
%! plot (xspline,sin (xspline),"r", xspline,yspline,"g-", x,y,"b+");
%! legend ("original", "interpolation", "interpolation points");
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original
%!shared x,y,abserr
%! x = [0:10]; y = sin (x); abserr = 1e-14;
%!assert (spline (x,y,x), y, abserr)
%!assert (spline (x,y,x'), y', abserr)
%!assert (spline (x',y',x'), y', abserr)
%!assert (spline (x',y',x), y, abserr)
%!assert (isempty (spline (x',y',[])))
%!assert (isempty (spline (x,y,[])))
%!assert (spline (x,[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr)
%!assert (spline (x,[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr)
%!assert (spline (x',[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr)
%!assert (spline (x',[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr)
%! y = cos (x) + i*sin (x);
%!assert (spline (x,y,x), y, abserr)
%!assert (real (spline (x,y,x)), real (y), abserr)
%!assert (real (spline (x,y,x.')), real (y).', abserr)
%!assert (real (spline (x.',y.',x.')), real (y).', abserr)
%!assert (real (spline (x.',y,x)), real (y), abserr)
%!assert (imag (spline (x,y,x)), imag (y), abserr)
%!assert (imag (spline (x,y,x.')), imag (y).', abserr)
%!assert (imag (spline (x.',y.',x.')), imag (y).', abserr)
%!assert (imag (spline (x.',y,x)), imag (y), abserr)
%!test
%! xnan = 5;
%! y(x==xnan) = NaN;
%! ok = ! isnan (y);
%! assert (spline (x, y, x(ok)), y(ok), abserr);
%!test
%! ok = ! isnan (y);
%! assert (! isnan (spline (x, y, x(! ok))));
%!test
%! x = [1,2];
%! y = [1,4];
%! assert (spline (x,y,x), [1,4], abserr);
%!test
%! x = [2,1];
%! y = [1,4];
%! assert (spline (x,y,x), [1,4], abserr);
%!test
%! x = [1,2];
%! y = [1,2,3,4];
%! pp = spline (x,y);
%! [x,P] = unmkpp (pp);
%! assert (P, [3,-3,1,2], abserr);
%!test
%! x = [2,1];
%! y = [1,2,3,4];
%! pp = spline (x,y);
%! pp2 = spline (x', y');
%! [x,P] = unmkpp (pp);
%! assert (P, [7,-9,1,3], abserr);
%! assert (pp2, pp);
%!test
%! x = [0,1,2];
%! y = [0,0,1,0,0];
%! pp = spline (x,y);
%! pp2 = spline (x', y');
%! [x,P] = unmkpp (pp);
%! assert (P, [-2,3,0,0;2,-3,0,1], abserr);
%! assert (pp2, pp);
%!test
%! x = [0,1,2,3];
%! y = [0,0,1,1,0,0];
%! pp = spline (x,y);
%! pp2 = spline (x', y');
%! [x,P] = unmkpp (pp);
%! assert (P, [-1,2,0,0;0,-1,1,1;1,-1,-1,1], abserr);
%! assert (pp2, pp);
|