File: spline.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (303 lines) | stat: -rw-r--r-- 9,482 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{pp} =} spline (@var{x}, @var{y})
## @deftypefnx {} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi})
## Return the cubic spline interpolant of points @var{x} and @var{y}.
##
## When called with two arguments, return the piecewise polynomial @var{pp}
## that may be used with @code{ppval} to evaluate the polynomial at specific
## points.
##
## When called with a third input argument, @code{spline} evaluates the spline
## at the points @var{xi}.  The third calling form
## @code{spline (@var{x}, @var{y}, @var{xi})} is equivalent to
## @code{ppval (spline (@var{x}, @var{y}), @var{xi})}.
##
## The variable @var{x} must be a vector of length @var{n}.
##
## @var{y} can be either a vector or array.  If @var{y} is a vector it must
## have a length of either @var{n} or @code{@var{n} + 2}.  If the length of
## @var{y} is @var{n}, then the @qcode{"not-a-knot"} end condition is used.
## If the length of @var{y} is @code{@var{n} + 2}, then the first and last
## values of the vector @var{y} are the values of the first derivative of the
## cubic spline at the endpoints.
##
## If @var{y} is an array, then the size of @var{y} must have the form
## @tex
## $$[s_1, s_2, \cdots, s_k, n]$$
## @end tex
## @ifnottex
## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]}
## @end ifnottex
## or
## @tex
## $$[s_1, s_2, \cdots, s_k, n + 2].$$
## @end tex
## @ifnottex
## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}.
## @end ifnottex
## The array is reshaped internally to a matrix where the leading
## dimension is given by
## @tex
## $$s_1 s_2 \cdots s_k$$
## @end tex
## @ifnottex
## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}}
## @end ifnottex
## and each row of this matrix is then treated separately.  Note that this is
## exactly the opposite of @code{interp1} but is done for @sc{matlab}
## compatibility.
##
## @seealso{pchip, ppval, mkpp, unmkpp}
## @end deftypefn

## This code is based on csape.m from Octave Forge, but has been
## modified to use the sparse solver code in octave that itself allows
## special casing of tri-diagonal matrices, modified for NDArrays and
## for the treatment of vectors y 2 elements longer than x as complete
## splines.

function ret = spline (x, y, xi)

  x = x(:);
  n = length (x);
  if (n < 2)
    error ("spline: requires at least 2 points");
  endif

  ## Check the size and shape of y
  ndy = ndims (y);
  szy = size (y);
  if (ndy == 2 && (any (szy == n) || any (szy == n+2)))
    if (szy(2) == n || szy(2) == n+2)
      a = y.';
    else
      a = y;
      szy = szy([2 1]);
    endif
  else
    a = shiftdim (reshape (y, [prod(szy(1:end-1)), szy(end)]), 1);
  endif

  for k = (1:columns (a))(any (isnan (a)))
    ok = ! isnan (a(:,k));
    a(! ok,k) = spline (x(ok), a(ok,k), x(! ok));
  endfor

  complete = false;
  if (rows (a) == n + 2)
    complete = true;
    dfs = a(1,:);
    dfe = a(end,:);
    a = a(2:end-1,:);
  endif

  if (! issorted (x))
    [x, idx] = sort (x);
    a = a(idx,:);
  endif

  b = c = zeros (size (a));
  h = diff (x);
  idx = ones (columns (a), 1);

  if (complete)

    if (n == 2)
      d = (dfs + dfe) / (x(2) - x(1)) ^ 2 + ...
          2 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 3;
      c = (-2 * dfs - dfe) / (x(2) - x(1)) - ...
          3 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 2;
      b = dfs;
      a = a(1,:);
    else
      g(1,:) = (a(2,:) - a(1,:)) / h(1) - dfs;
      g(2:n-1,:) = (a(3:n,:) - a(2:n-1,:)) ./ h(2:n-1) - ...
                   (a(2:n-1,:) - a(1:n-2,:)) ./ h(1:n-2);
      g(n,:) = dfe - (a(n,:) - a(n-1,:)) / h(n-1);
      c = spdiags ([[h/6;0],[h(1)/3;(h(1:n-2)+h(2:n-1))/3;h(n-1)/3],[0;h/6]],...
                   [-1,0,1],n,n) \ (g / 2);
      b = diff (a) ./ h(1:n-1, idx) ...
          - h(1:n-1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:));
      d = diff (c) ./ (3 * h(1:n-1, idx));

      d = d.'(:);
      c = c(1:n-1,:).'(:);
      b = b.'(:);
      a = a(1:n-1,:).'(:);
    endif
  else

    if (n == 2)
      b = (a(2,:) - a(1,:)) / (x(2) - x(1));
      a = a(1,:);
      d = [];
      c = [];
    elseif (n == 3)

      n = 2;
      c = (a(1,:) - a(3,:)) / ((x(3) - x(1)) * (x(2) - x(3))) ...
          + (a(2,:) - a(1,:)) / ((x(2) - x(1)) * (x(2) - x(3)));
      b = (a(2,:) - a(1,:)) * (x(3) - x(1)) ...
          / ((x(2) - x(1)) * (x(3) - x(2))) ...
          + (a(1,:) - a(3,:)) * (x(2) - x(1)) ...
          / ((x(3) - x(1)) * (x(3) - x(2)));
      a = a(1,:);
      d = [];
      x = [min(x), max(x)];
    else

      g = zeros (n-2, columns (a));
      g(1,:) = 3 / (h(1) + h(2)) ...
          * (a(3,:) - a(2,:) - h(2) / h(1) * (a(2,:) - a(1,:)));
      g(n-2,:) = 3 / (h(n-1) + h(n-2)) ...
          * (h(n-2) / h(n-1) * (a(n,:) - a(n-1,:)) - (a(n-1,:) - a(n-2,:)));

      if (n > 4)

        g(2:n - 3,:) = 3 * diff (a(3:n-1,:)) ./ h(3:n-2,idx) ...
            - 3 * diff (a(2:n-2,:)) ./ h(2:n - 3,idx);

        dg = 2 * (h(1:n-2) + h(2:n-1));
        dg(1) = dg(1) - h(1);
        dg(n-2) = dg(n-2) - h(n-1);

        ldg = udg = h(2:n-2);
        udg(1) = udg(1) - h(1);
        ldg(n - 3) = ldg(n-3) - h(n-1);
        c(2:n-1,:) = spdiags ([[ldg(:); 0], dg, [0; udg(:)]],
                              [-1, 0, 1], n-2, n-2) \ g;

      elseif (n == 4)

        dg = [h(1) + 2 * h(2); 2 * h(2) + h(3)];
        ldg = h(2) - h(3);
        udg = h(2) - h(1);
        c(2:n-1,:) = spdiags ([[ldg(:);0], dg, [0; udg(:)]],
                              [-1, 0, 1], n-2, n-2) \ g;

      endif

      c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:));
      c(n,:) = c(n-1,:) + h(n-1) / h(n-2) * (c(n-1,:) - c(n-2,:));
      b = diff (a) ./ h(1:n-1, idx) ...
          - h(1:n-1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:));
      d = diff (c) ./ (3 * h(1:n-1, idx));

      d = d.'(:);
      c = c(1:n-1,:).'(:);
      b = b.'(:);
      a = a(1:n-1,:).'(:);
    endif

  endif
  ret = mkpp (x, cat (2, d, c, b, a), szy(1:end-1));

  if (nargin == 3)
    ret = ppval (ret, xi);
  endif

endfunction


%!demo
%! x = 0:10; y = sin (x);
%! xspline = 0:0.1:10;  yspline = spline (x,y,xspline);
%! title ("spline fit to points from sin (x)");
%! plot (xspline,sin (xspline),"r", xspline,yspline,"g-", x,y,"b+");
%! legend ("original", "interpolation", "interpolation points");
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!shared x,y,abserr
%! x = [0:10]; y = sin (x); abserr = 1e-14;
%!assert (spline (x,y,x), y, abserr)
%!assert (spline (x,y,x'), y', abserr)
%!assert (spline (x',y',x'), y', abserr)
%!assert (spline (x',y',x), y, abserr)
%!assert (isempty (spline (x',y',[])))
%!assert (isempty (spline (x,y,[])))
%!assert (spline (x,[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr)
%!assert (spline (x,[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr)
%!assert (spline (x',[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr)
%!assert (spline (x',[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr)
%! y = cos (x) + i*sin (x);
%!assert (spline (x,y,x), y, abserr)
%!assert (real (spline (x,y,x)), real (y), abserr)
%!assert (real (spline (x,y,x.')), real (y).', abserr)
%!assert (real (spline (x.',y.',x.')), real (y).', abserr)
%!assert (real (spline (x.',y,x)), real (y), abserr)
%!assert (imag (spline (x,y,x)), imag (y), abserr)
%!assert (imag (spline (x,y,x.')), imag (y).', abserr)
%!assert (imag (spline (x.',y.',x.')), imag (y).', abserr)
%!assert (imag (spline (x.',y,x)), imag (y), abserr)
%!test
%! xnan = 5;
%! y(x==xnan) = NaN;
%! ok = ! isnan (y);
%! assert (spline (x, y, x(ok)), y(ok), abserr);
%!test
%! ok = ! isnan (y);
%! assert (! isnan (spline (x, y, x(! ok))));
%!test
%! x = [1,2];
%! y = [1,4];
%! assert (spline (x,y,x), [1,4], abserr);
%!test
%! x = [2,1];
%! y = [1,4];
%! assert (spline (x,y,x), [1,4], abserr);
%!test
%! x = [1,2];
%! y = [1,2,3,4];
%! pp = spline (x,y);
%! [x,P] = unmkpp (pp);
%! assert (P, [3,-3,1,2], abserr);
%!test
%! x = [2,1];
%! y = [1,2,3,4];
%! pp = spline (x,y);
%! pp2 = spline (x', y');
%! [x,P] = unmkpp (pp);
%! assert (P, [7,-9,1,3], abserr);
%! assert (pp2, pp);
%!test
%! x = [0,1,2];
%! y = [0,0,1,0,0];
%! pp = spline (x,y);
%! pp2 = spline (x', y');
%! [x,P] = unmkpp (pp);
%! assert (P, [-2,3,0,0;2,-3,0,1], abserr);
%! assert (pp2, pp);
%!test
%! x = [0,1,2,3];
%! y = [0,0,1,1,0,0];
%! pp = spline (x,y);
%! pp2 = spline (x', y');
%! [x,P] = unmkpp (pp);
%! assert (P, [-1,2,0,0;0,-1,1,1;1,-1,-1,1], abserr);
%! assert (pp2, pp);