1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
########################################################################
##
## Copyright (C) 2012-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{pp} =} splinefit (@var{x}, @var{y}, @var{breaks})
## @deftypefnx {} {@var{pp} =} splinefit (@var{x}, @var{y}, @var{p})
## @deftypefnx {} {@var{pp} =} splinefit (@dots{}, "periodic", @var{periodic})
## @deftypefnx {} {@var{pp} =} splinefit (@dots{}, "robust", @var{robust})
## @deftypefnx {} {@var{pp} =} splinefit (@dots{}, "beta", @var{beta})
## @deftypefnx {} {@var{pp} =} splinefit (@dots{}, "order", @var{order})
## @deftypefnx {} {@var{pp} =} splinefit (@dots{}, "constraints", @var{constraints})
##
## Fit a piecewise cubic spline with breaks (knots) @var{breaks} to the
## noisy data, @var{x} and @var{y}.
##
## @var{x} is a vector, and @var{y} is a vector or N-D array. If @var{y} is an
## N-D array, then @var{x}(j) is matched to @var{y}(:,@dots{},:,j).
##
## @var{p} is a positive integer defining the number of intervals along
## @var{x}, and @var{p}+1 is the number of breaks. The number of points in
## each interval differ by no more than 1.
##
## The optional property @var{periodic} is a logical value which specifies
## whether a periodic boundary condition is applied to the spline. The
## length of the period is @code{max (@var{breaks}) - min (@var{breaks})}.
## The default value is @code{false}.
##
## The optional property @var{robust} is a logical value which specifies
## if robust fitting is to be applied to reduce the influence of outlying
## data points. Three iterations of weighted least squares are performed.
## Weights are computed from previous residuals. The sensitivity of outlier
## identification is controlled by the property @var{beta}. The value of
## @var{beta} is restricted to the range, 0 < @var{beta} < 1. The default
## value is @var{beta} = 1/2. Values close to 0 give all data equal
## weighting. Increasing values of @var{beta} reduce the influence of
## outlying data. Values close to unity may cause instability or rank
## deficiency.
##
## The fitted spline is returned as a piecewise polynomial, @var{pp}, and
## may be evaluated using @code{ppval}.
##
## The splines are constructed of polynomials with degree @var{order}.
## The default is a cubic, @var{order}=3. A spline with P pieces has
## P+@var{order} degrees of freedom. With periodic boundary conditions
## the degrees of freedom are reduced to P.
##
## The optional property, @var{constraints}, is a structure specifying linear
## constraints on the fit. The structure has three fields, @qcode{"xc"},
## @qcode{"yc"}, and @qcode{"cc"}.
##
## @table @asis
## @item @qcode{"xc"}
## Vector of the x-locations of the constraints.
##
## @item @qcode{"yc"}
## Constraining values at the locations @var{xc}.
## The default is an array of zeros.
##
## @item @qcode{"cc"}
## Coefficients (matrix). The default is an array of ones. The number of
## rows is limited to the order of the piecewise polynomials, @var{order}.
## @end table
##
## Constraints are linear combinations of derivatives of order 0 to
## @var{order}-1 according to
##
## @example
## @group
## @tex
## $cc(1,j) \cdot y(xc(j)) + cc(2,j) \cdot y\prime(xc(j)) + ... = yc(:,\dots,:,j)$.
## @end tex
## @ifnottex
## cc(1,j) * y(xc(j)) + cc(2,j) * y'(xc(j)) + ... = yc(:,...,:,j).
## @end ifnottex
## @end group
## @end example
##
## @seealso{interp1, unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps}
## @end deftypefn
function pp = splinefit (x, y, breaks, varargin)
if (nargin > 3)
n = cellfun ("isclass", varargin, "char");
varargin(n) = lower (varargin(n));
try
props = struct (varargin{:});
catch
print_usage ();
end_try_catch
else
props = struct ();
endif
fields = fieldnames (props);
for f = 1:numel (fields)
if (! any (strcmp (fields{f},
{"periodic", "robust", "beta", "order", "constraints"})))
error ("Octave:splinefit:invalidproperty",
"unrecognized property '%s'", fields{f});
endif
endfor
args = {};
if (isfield (props, "periodic") && props.periodic)
args{end+1} = "p";
endif
if (isfield (props, "robust") && props.robust)
args{end+1} = "r";
endif
if (isfield (props, "beta"))
if (0 < props.beta && props.beta < 1)
args{end+1} = props.beta;
else
error ("Octave:splinefit:invalidbeta", "invalid beta parameter (0 < BETA < 1)");
endif
endif
if (isfield (props, "order"))
if (props.order >= 0)
args{end+1} = props.order + 1;
else
error ("Octave:splinefit:invalidorder", "invalid ORDER");
endif
endif
if (isfield (props, "constraints"))
args{end+1} = props.constraints;
endif
if (nargin < 3)
print_usage ();
elseif (! isnumeric (breaks) || ! isvector (breaks))
print_usage ();
endif
pp = __splinefit__ (x, y, breaks, args{:});
endfunction
%!demo
%! % Noisy data
%! x = linspace (0, 2*pi, 100);
%! y = sin (x) + 0.1 * randn (size (x));
%! % Breaks
%! breaks = [0:5, 2*pi];
%! % Fit a spline of order 5
%! pp = splinefit (x, y, breaks, "order", 4);
%! clf;
%! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r");
%! xlabel ("Independent Variable");
%! ylabel ("Dependent Variable");
%! title ("Fit a piece-wise polynomial of order 4");
%! legend ({"data", "fit", "breaks"});
%! axis tight
%! ylim auto
%!demo
%! % Noisy data
%! x = linspace (0,2*pi, 100);
%! y = sin (x) + 0.1 * randn (size (x));
%! % Breaks
%! breaks = [0:5, 2*pi];
%! % Fit a spline of order 3 with periodic boundary conditions
%! pp = splinefit (x, y, breaks, "order", 2, "periodic", true);
%! clf;
%! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r");
%! xlabel ("Independent Variable");
%! ylabel ("Dependent Variable");
%! title ("Fit a periodic piece-wise polynomial of order 2");
%! legend ({"data", "fit", "breaks"});
%! axis tight
%! ylim auto
%!demo
%! % Noisy data
%! x = linspace (0, 2*pi, 100);
%! y = sin (x) + 0.1 * randn (size (x));
%! % Breaks
%! breaks = [0:5, 2*pi];
%! % Constraints: y(0) = 0, y'(0) = 1 and y(3) + y"(3) = 0
%! xc = [0 0 3];
%! yc = [0 1 0];
%! cc = [1 0 1; 0 1 0; 0 0 1];
%! con = struct ("xc", xc, "yc", yc, "cc", cc);
%! % Fit a cubic spline with 8 pieces and constraints
%! pp = splinefit (x, y, 8, "constraints", con);
%! clf;
%! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r");
%! xlabel ("Independent Variable");
%! ylabel ("Dependent Variable");
%! title ("Fit a cubic spline with constraints");
%! legend ({"data", "fit", "breaks"});
%! axis tight
%! ylim auto
%!demo
%! % Noisy data
%! x = linspace (0, 2*pi, 100);
%! y = sin (x) + 0.1 * randn (size (x));
%! % Breaks
%! breaks = [0:5, 2*pi];
%! xc = [0 0 3];
%! yc = [0 1 0];
%! cc = [1 0 1; 0 1 0; 0 0 1];
%! con = struct ("xc", xc, "yc", yc, "cc", cc);
%! % Fit a spline of order 6 with constraints and periodicity
%! pp = splinefit (x, y, breaks, "constraints", con, "order", 5, "periodic", true);
%! clf;
%! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r");
%! xlabel ("Independent Variable");
%! ylabel ("Dependent Variable");
%! title ("Fit a 5th order piece-wise periodic polynomial with constraints");
%! legend ({"data", "fit", "breaks"});
%! axis tight
%! ylim auto
%!shared xb, yb, x
%! xb = 0:2:10;
%! yb = 2*rand (size (xb)) - 1;
%! x = 0:0.1:10;
%!test
%! y = interp1 (xb, yb, x, "linear");
%! assert (ppval (splinefit (x, y, xb, "order", 1), x), y, 20 * eps ());
%!test
%! y = interp1 (xb, yb, x, "spline");
%! assert (ppval (splinefit (x, y, xb, "order", 3), x), y, 20 * eps ());
%!test
%! y = interp1 (xb, yb, x, "spline");
%! assert (ppval (splinefit (x, y, xb), x), y, 20 * eps ());
|