File: intersect.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (300 lines) | stat: -rw-r--r-- 8,482 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{c} =} intersect (@var{a}, @var{b})
## @deftypefnx {} {@var{c} =} intersect (@var{a}, @var{b}, "rows")
## @deftypefnx {} {@var{c} =} intersect (@dots{}, "sorted")
## @deftypefnx {} {@var{c} =} intersect (@dots{}, "stable")
## @deftypefnx {} {@var{c} =} intersect (@dots{}, "legacy")
## @deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} intersect (@dots{})
##
## Return the unique elements common to both @var{a} and @var{b}.
##
## If @var{a} and @var{b} are both row vectors then return a row vector;
## Otherwise, return a column vector.  The inputs may also be cell arrays of
## strings.
##
## If the optional input @qcode{"rows"} is given then return the common rows of
## @var{a} and @var{b}.  The inputs must be 2-D numeric matrices to use this
## option.
##
## The optional argument @qcode{"sorted"}/@qcode{"stable"} controls the order
## in which unique values appear in the output.  The default is
## @qcode{"sorted"} and values in the output are placed in ascending order.
## The alternative @qcode{"stable"} preserves the order found in the input.
##
## If requested, return column index vectors @var{ia} and @var{ib} such that
## @code{@var{c} = @var{a}(@var{ia})} and @code{@var{c} = @var{b}(@var{ib})}.
##
## Programming Note: The input flag @qcode{"legacy"} changes the algorithm
## to be compatible with @sc{matlab} releases prior to R2012b.
##
## @seealso{unique, union, setdiff, setxor, ismember}
## @end deftypefn

function [c, ia, ib] = intersect (a, b, varargin)

  if (nargin < 2 || nargin > 4)
    print_usage ();
  endif

  [a, b] = validsetargs ("intersect", a, b, varargin{:});

  ## Special case of empty matrices
  if (isempty (a) || isempty (b))
    ## Lots of type checking required for Matlab compatibility.
    if (isnumeric (a) && isnumeric (b))
      c = [];
    elseif (iscell (b))
      c = {};
    else
      c = "";
    endif
    ia = ib = [];
    return;
  endif

  by_rows = any (strcmp ("rows", varargin));
  optsorted = ! any (strcmp ("stable", varargin));
  optlegacy = any (strcmp ("legacy", varargin));

  if (optlegacy)
    isrowvec = ! iscolumn (a) || ! iscolumn (b);
  else
    isrowvec = isrow (a) && isrow (b);
  endif

  ## Form A and B into sets
  if (nargout > 1 || ! optsorted)
    [a, ia] = unique (a, varargin{:});
    ia = ia(:);
    [b, ib] = unique (b, varargin{:});
    ib = ib(:);
  else
    a = unique (a, varargin{:});
    b = unique (b, varargin{:});
  endif

  if (by_rows)
    c = [a; b];
    if (nargout > 1 || ! optsorted)
      [c, ic] = sortrows (c);
    else
      c = sortrows (c);
    endif
    match = find (all (c(1:end-1,:) == c(2:end,:), 2));
    if (optsorted)
      c = c(match, :);
    else
      c = [a; b];
      ## FIXME: Is there a way to avoid a call to sort?
      [c_ind, sort_ind] = sort (ic(match));
      c = c(c_ind, :);
    endif
    len_a = rows (a);
  else
    c = [a(:); b(:)];
    if (nargout > 1 || ! optsorted)
      [c, ic] = sort (c);
    else
      c = sort (c);
    endif
    if (iscellstr (c))
      match = find (strcmp (c(1:end-1), c(2:end)));
    else
      match = find (c(1:end-1) == c(2:end));
    endif
    len_a = length (a);
    if (optsorted)
      c = c(match);
    else
      c = [a(:); b(:)];
      ## FIXME: Is there a way to avoid a call to sort?
      [c_ind, sort_ind] = sort (ic(match));
      c = c(c_ind);
    endif

    ## Adjust output orientation for Matlab compatibility
    if (isrowvec)
      c = c.';
    endif
  endif

  if (nargout > 1)
    ia = ia(ic(match));            # a(ia) == c
    ib = ib(ic(match+1) - len_a);  # b(ib) == c
    if (! optsorted)
      ## FIXME: Is there a way to avoid a call to sort?
      ia = sort (ia);
      ib_ind(sort_ind) = 1:numel(sort_ind);
      ## Change ordering to conform to unsorted c
      ib(ib_ind) = ib;
    endif
    if (optlegacy && isrowvec && ! by_rows)
      ia = ia.';
      ib = ib.';
    endif
  endif

endfunction


%!assert (intersect ([1 2 3 4], [9 8 4 2]), [2, 4])
%!assert (intersect ([1 2; 2 3; 4 5], [2 3; 3 4; 5 6], "rows"), [2 3])
%!assert (intersect ([1 NaN], [NaN NaN 5]), zeros (1,0))

%!test
%! a = [1 1 1 2 2 2];
%! b = [1 2 3 4 5 6];
%! c = intersect (a, b);
%! assert (c, [1,2]);

## Test multi-dimensional arrays
%!test
%! a = rand (3,3,3);
%! b = a;
%! b(1,1,1) = 2;
%! assert (intersect (a, b), sort (a(2:end)'));

## Test the routine for index vectors ia and ib
%!test
%! a = [3 2 4 5 7 6 5 1 0 13 13];
%! b = [3 5 12 1 1 7];
%! [c, ia, ib] = intersect (a, b);
%! assert (c, [1, 3, 5, 7]);
%! assert (ia, [8; 1; 4; 5]);
%! assert (ib, [4; 1; 2; 6]);
%! assert (a(ia), c);
%! assert (b(ib), c);

## Test "rows" argument
%!test
%! a = [1,1,2;1,4,5;2,1,7];
%! b = [1,4,5;2,3,4;1,1,2;9,8,7];
%! [c,ia,ib] = intersect (a, b, "rows");
%! assert (c, [1,1,2;1,4,5]);
%! assert (ia, [1;2]);
%! assert (ib, [3;1]);
%! assert (a(ia,:), c);
%! assert (b(ib,:), c);

%!test
%! a = [1 2 3 4; 5 6 7 8; 9 10 11 12];
%! [b, ia, ib] = intersect (a, a, "rows");
%! assert (b, a);
%! assert (ia, [1:3]');
%! assert (ib, [1:3]');

## Test "stable" argument
%!test
%! a = [2 2 2 1 1 1];
%! b = [1 2 3 4 5 6];
%! c = intersect (a, b, "stable");
%! assert (c, [2,1]);

## Test "stable" argument
%!test <*60347>
%! a = [8 4 2 6]';
%! b = [1 7 2 8]';
%! [c, ia, ib] = intersect (a, b, "stable");
%! assert (c, [8;2]);
%! assert (ia, [1;3]);
%! assert (ib, [4;3]);

%!test
%! a = [3 2 4 5 7 6 5 1 0 13 13];
%! b = [3 5 12 1 1 7];
%! [c, ia, ib] = intersect (a, b, "stable");
%! assert (c, [3, 5, 7, 1]);
%! assert (ia, [1; 4; 5; 8]);
%! assert (ib, [1; 2; 6; 4]);
%! assert (a(ia), c);
%! assert (b(ib), c);

%!test
%! a = [1,4,5;1,1,2;2,1,7];
%! b = [1,4,5;2,3,4;1,1,2;9,8,7];
%! [c, ia, ib] = intersect (a, b, "rows", "stable");
%! assert (c, [1,4,5; 1,1,2]);
%! assert (ia, [1;2]);
%! assert (ib, [1;3]);
%! assert (a(ia,:), c);
%! assert (b(ib,:), c);

%!test
%! a = [1 2 3 4; 5 6 7 8; 9 10 11 12];
%! [b, ia, ib] = intersect (a, a, "rows", "stable");
%! assert (b, a);
%! assert (ia, [1:3]');
%! assert (ib, [1:3]');

## Test "legacy" argument
%!test
%! a = [7 1 7 7 4];
%! b = [7 0 4 4 0];
%! [c, ia, ib] = intersect (a, b);
%! assert (c, [4, 7]);
%! assert (ia, [5; 1]);
%! assert (ib, [3; 1]);
%! [c, ia, ib] = intersect (a, b, "legacy");
%! assert (c, [4, 7]);
%! assert (ia, [5, 4]);
%! assert (ib, [4, 1]);

%!test  # "legacy" + "rows"
%! A = [ 1 2; 3 4; 5 6; 3 4; 7 8 ];
%! B = [ 3 4; 7 8; 9 10 ];
%! [c, ia, ib] = intersect (A, B, "rows");
%! assert (c, [3, 4; 7, 8]);
%! assert (ia, [2; 5]);
%! assert (ib, [1; 2]);
%! [c, ia, ib] = intersect (A, B, "rows", "legacy");
%! assert (c, [3, 4; 7, 8]);
%! assert (ia, [4; 5]);
%! assert (ib, [1; 2]);

## Test orientation of output
%!shared a,b
%! a = 1:4;
%! b = 2:5;

%!assert (size (intersect (a, b)), [1, 3])
%!assert (size (intersect (a', b)), [3, 1])
%!assert (size (intersect (a, b')), [3, 1])
%!assert (size (intersect (a', b')), [3, 1])
%!assert (size (intersect (a, b, "legacy")), [1, 3])
%!assert (size (intersect (a', b, "legacy")), [1, 3])
%!assert (size (intersect (a, b', "legacy")), [1, 3])
%!assert (size (intersect (a', b', "legacy")), [3, 1])

## Test return type of empty intersections
%!assert (intersect (['a', 'b'], {}), {})
%!assert (intersect ([], {'a', 'b'}), {})
%!assert (intersect ([], {}), {})
%!assert (intersect ({'a', 'b'}, []), {})
%!assert (intersect ([], ['a', 'b']), "")
%!assert (intersect ({}, []), {})
%!assert (intersect (['a', 'b'], []), "")