File: fftfilt.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (194 lines) | stat: -rw-r--r-- 5,956 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{y} =} fftfilt (@var{b}, @var{x})
## @deftypefnx {} {@var{y} =} fftfilt (@var{b}, @var{x}, @var{n})
## Filter @var{x} with the FIR filter @var{b} using the FFT.
##
## If @var{x} is a matrix, filter each column of the matrix.
##
## Given the optional third argument, @var{n}, @code{fftfilt} uses the
## overlap-add method to filter @var{x} with @var{b} using an N-point FFT@.
## The FFT size must be an even power of 2 and must be greater than or equal to
## the length of @var{b}.  If the specified @var{n} does not meet these
## criteria, it is automatically adjusted to the nearest value that does.
##
## @seealso{filter, filter2}
## @end deftypefn

function y = fftfilt (b, x, n)

  ## If N is not specified explicitly, we do not use the overlap-add
  ## method at all because loops are really slow.  Otherwise, we only
  ## ensure that the number of points in the FFT is the smallest power
  ## of two larger than N and length(b).  This could result in length
  ## one blocks, but if the user knows better ...

  if (nargin < 2)
    print_usage ();
  endif

  transpose = (rows (x) == 1);

  if (transpose)
    x = x.';
  endif

  [r_x, c_x] = size (x);
  [r_b, c_b] = size (b);

  if (! isvector (b))
    error ("fftfilt: B must be a vector");
  endif

  if (ndims (x) != 2)
    error ("fftfilt: X must be a 1-D or 2-D array");
  endif

  l_b = r_b * c_b;
  b = reshape (b, l_b, 1);

  if (nargin == 2)
    ## Use FFT with the smallest power of 2 which is >= length (x) +
    ## length (b) - 1 as number of points ...
    n = 2 ^ nextpow2 (r_x + l_b - 1);
    B = fft (b, n);
    y = ifft (fft (x, n) .* B(:, ones (1, c_x)));
  else
    ## Use overlap-add method ...
    if (! (isscalar (n)))
      error ("fftfilt: N has to be a scalar");
    endif
    n = 2 ^ nextpow2 (max ([n, l_b]));
    L = n - l_b + 1;
    B = fft (b, n);
    B = B(:, ones (c_x,1));
    R = ceil (r_x / L);
    y = zeros (r_x, c_x);
    for r = 1:R
      lo = (r - 1) * L + 1;
      hi = min (r * L, r_x);
      tmp = zeros (n, c_x);
      tmp(1:(hi-lo+1),:) = x(lo:hi,:);
      tmp = ifft (fft (tmp) .* B);
      hi  = min (lo+n-1, r_x);
      y(lo:hi,:) = y(lo:hi,:) + tmp(1:(hi-lo+1),:);
    endfor
  endif

  y = y(1:r_x, :);

  ## Final cleanups:

  ## - If both b and x are real, y should be real.
  ## - If b is real and x is imaginary, y should be imaginary.
  ## - If b is imaginary and x is real, y should be imaginary.
  ## - If both b and x are imaginary, y should be real.
  xisreal = all (imag (x) == 0);
  xisimag = all (real (x) == 0);

  if (all (imag (b) == 0))
    y (:,xisreal) = real (y (:,xisreal));
    y (:,xisimag) = complex (real (y (:,xisimag)) * 0, imag (y (:,xisimag)));
  elseif (all (real (b) == 0))
    y (:,xisreal) = complex (real (y (:,xisreal)) * 0, imag (y (:,xisreal)));
    y (:,xisimag) = real (y (:,xisimag));
  endif

  ## - If both x and b are integer in both real and imaginary
  ##   components, y should be integer.
  if (! any (b - fix (b)))
    idx = find (! any (x - fix (x)));
    y (:, idx) = round (y (:, idx));
  endif

  ## Transpose after cleanup, otherwise rounding fails.
  if (transpose)
    y = y.';
  endif

endfunction


%!shared b, x, r

%!testif HAVE_FFTW
%! b = [1 1];
%! x = [1, zeros(1,9)];
%! assert (fftfilt (b,  x  ), [1 1 0 0 0 0 0 0 0 0]  );
%! assert (fftfilt (b,  x.'), [1 1 0 0 0 0 0 0 0 0].');
%! assert (fftfilt (b.',x  ), [1 1 0 0 0 0 0 0 0 0]  );
%! assert (fftfilt (b.',x.'), [1 1 0 0 0 0 0 0 0 0].');
%! assert (fftfilt (b,  [x.' x.']), [1 1 0 0 0 0 0 0 0 0].'*[1 1]);
%! assert (fftfilt (b,  [x.'+2*eps x.']) == [1 1 0 0 0 0 0 0 0 0].'*[1 1],
%!         [false(10, 1) true(10, 1)]);

%!testif HAVE_FFTW
%! r = sqrt (1/2) * (1+i);
%! b = b*r;
%! assert (fftfilt (b, x  ), r*[1 1 0 0 0 0 0 0 0 0]  , eps  );
%! assert (fftfilt (b, r*x), r*r*[1 1 0 0 0 0 0 0 0 0], 2*eps);
%! assert (fftfilt (b, x.'), r*[1 1 0 0 0 0 0 0 0 0].', eps  );

%!testif HAVE_FFTW
%! b  = [1 1];
%! x  = zeros (10,3); x(1,1)=-1; x(1,2)=1;
%! y0 = zeros (10,3); y0(1:2,1)=-1; y0(1:2,2)=1;
%! y  = fftfilt (b, x);
%! assert (y0, y);
%! y  = fftfilt (b*i, x);
%! assert (y0*i, y);
%! y  = fftfilt (b, x*i);
%! assert (y0*i, y);
%! y  = fftfilt (b*i, x*i);
%! assert (-y0, y);
%! x  = rand (10, 1);
%! y  = fftfilt (b, [x x*i]);
%! assert (true, isreal (y(:,1)));
%! assert (false, any (real (y(:,2))));

%!testif HAVE_FFTW
%! b  = rand (10, 1);
%! x  = rand (10, 1);
%! y0 = filter (b, 1, x);
%! y  = fftfilt (b, x);
%! assert (y0, y, 16*eps);
%! y0 = filter (b*i, 1, x*i);
%! y  = fftfilt (b*i, x*i);
%! assert (y0, y, 16*eps);

%!testif HAVE_FFTW
%! b  = rand (10, 1) + i*rand (10, 1);
%! x  = rand (10, 1) + i*rand (10, 1);
%! y0 = filter (b, 1, x);
%! y  = fftfilt (b, x);
%! assert (y0, y, 55*eps);

## Test input validation
%!error <Invalid call> fftfilt (1)
%!error fftfilt (ones (2), 1)
%!error fftfilt (2, ones (3,3,3))
%!error fftfilt (2, 1, ones (2))