1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} fftfilt (@var{b}, @var{x})
## @deftypefnx {} {@var{y} =} fftfilt (@var{b}, @var{x}, @var{n})
## Filter @var{x} with the FIR filter @var{b} using the FFT.
##
## If @var{x} is a matrix, filter each column of the matrix.
##
## Given the optional third argument, @var{n}, @code{fftfilt} uses the
## overlap-add method to filter @var{x} with @var{b} using an N-point FFT@.
## The FFT size must be an even power of 2 and must be greater than or equal to
## the length of @var{b}. If the specified @var{n} does not meet these
## criteria, it is automatically adjusted to the nearest value that does.
##
## @seealso{filter, filter2}
## @end deftypefn
function y = fftfilt (b, x, n)
## If N is not specified explicitly, we do not use the overlap-add
## method at all because loops are really slow. Otherwise, we only
## ensure that the number of points in the FFT is the smallest power
## of two larger than N and length(b). This could result in length
## one blocks, but if the user knows better ...
if (nargin < 2)
print_usage ();
endif
transpose = (rows (x) == 1);
if (transpose)
x = x.';
endif
[r_x, c_x] = size (x);
[r_b, c_b] = size (b);
if (! isvector (b))
error ("fftfilt: B must be a vector");
endif
if (ndims (x) != 2)
error ("fftfilt: X must be a 1-D or 2-D array");
endif
l_b = r_b * c_b;
b = reshape (b, l_b, 1);
if (nargin == 2)
## Use FFT with the smallest power of 2 which is >= length (x) +
## length (b) - 1 as number of points ...
n = 2 ^ nextpow2 (r_x + l_b - 1);
B = fft (b, n);
y = ifft (fft (x, n) .* B(:, ones (1, c_x)));
else
## Use overlap-add method ...
if (! (isscalar (n)))
error ("fftfilt: N has to be a scalar");
endif
n = 2 ^ nextpow2 (max ([n, l_b]));
L = n - l_b + 1;
B = fft (b, n);
B = B(:, ones (c_x,1));
R = ceil (r_x / L);
y = zeros (r_x, c_x);
for r = 1:R
lo = (r - 1) * L + 1;
hi = min (r * L, r_x);
tmp = zeros (n, c_x);
tmp(1:(hi-lo+1),:) = x(lo:hi,:);
tmp = ifft (fft (tmp) .* B);
hi = min (lo+n-1, r_x);
y(lo:hi,:) = y(lo:hi,:) + tmp(1:(hi-lo+1),:);
endfor
endif
y = y(1:r_x, :);
## Final cleanups:
## - If both b and x are real, y should be real.
## - If b is real and x is imaginary, y should be imaginary.
## - If b is imaginary and x is real, y should be imaginary.
## - If both b and x are imaginary, y should be real.
xisreal = all (imag (x) == 0);
xisimag = all (real (x) == 0);
if (all (imag (b) == 0))
y (:,xisreal) = real (y (:,xisreal));
y (:,xisimag) = complex (real (y (:,xisimag)) * 0, imag (y (:,xisimag)));
elseif (all (real (b) == 0))
y (:,xisreal) = complex (real (y (:,xisreal)) * 0, imag (y (:,xisreal)));
y (:,xisimag) = real (y (:,xisimag));
endif
## - If both x and b are integer in both real and imaginary
## components, y should be integer.
if (! any (b - fix (b)))
idx = find (! any (x - fix (x)));
y (:, idx) = round (y (:, idx));
endif
## Transpose after cleanup, otherwise rounding fails.
if (transpose)
y = y.';
endif
endfunction
%!shared b, x, r
%!testif HAVE_FFTW
%! b = [1 1];
%! x = [1, zeros(1,9)];
%! assert (fftfilt (b, x ), [1 1 0 0 0 0 0 0 0 0] );
%! assert (fftfilt (b, x.'), [1 1 0 0 0 0 0 0 0 0].');
%! assert (fftfilt (b.',x ), [1 1 0 0 0 0 0 0 0 0] );
%! assert (fftfilt (b.',x.'), [1 1 0 0 0 0 0 0 0 0].');
%! assert (fftfilt (b, [x.' x.']), [1 1 0 0 0 0 0 0 0 0].'*[1 1]);
%! assert (fftfilt (b, [x.'+2*eps x.']) == [1 1 0 0 0 0 0 0 0 0].'*[1 1],
%! [false(10, 1) true(10, 1)]);
%!testif HAVE_FFTW
%! r = sqrt (1/2) * (1+i);
%! b = b*r;
%! assert (fftfilt (b, x ), r*[1 1 0 0 0 0 0 0 0 0] , eps );
%! assert (fftfilt (b, r*x), r*r*[1 1 0 0 0 0 0 0 0 0], 2*eps);
%! assert (fftfilt (b, x.'), r*[1 1 0 0 0 0 0 0 0 0].', eps );
%!testif HAVE_FFTW
%! b = [1 1];
%! x = zeros (10,3); x(1,1)=-1; x(1,2)=1;
%! y0 = zeros (10,3); y0(1:2,1)=-1; y0(1:2,2)=1;
%! y = fftfilt (b, x);
%! assert (y0, y);
%! y = fftfilt (b*i, x);
%! assert (y0*i, y);
%! y = fftfilt (b, x*i);
%! assert (y0*i, y);
%! y = fftfilt (b*i, x*i);
%! assert (-y0, y);
%! x = rand (10, 1);
%! y = fftfilt (b, [x x*i]);
%! assert (true, isreal (y(:,1)));
%! assert (false, any (real (y(:,2))));
%!testif HAVE_FFTW
%! b = rand (10, 1);
%! x = rand (10, 1);
%! y0 = filter (b, 1, x);
%! y = fftfilt (b, x);
%! assert (y0, y, 16*eps);
%! y0 = filter (b*i, 1, x*i);
%! y = fftfilt (b*i, x*i);
%! assert (y0, y, 16*eps);
%!testif HAVE_FFTW
%! b = rand (10, 1) + i*rand (10, 1);
%! x = rand (10, 1) + i*rand (10, 1);
%! y0 = filter (b, 1, x);
%! y = fftfilt (b, x);
%! assert (y0, y, 55*eps);
## Test input validation
%!error <Invalid call> fftfilt (1)
%!error fftfilt (ones (2), 1)
%!error fftfilt (2, ones (3,3,3))
%!error fftfilt (2, 1, ones (2))
|