File: freqz.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (237 lines) | stat: -rw-r--r-- 6,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
########################################################################
##
## Copyright (C) 1994-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n}, "whole")
## @deftypefnx {} {[@var{h}, @var{w}] =} freqz (@var{b})
## @deftypefnx {} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a})
## @deftypefnx {} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n})
## @deftypefnx {} {@var{h} =} freqz (@var{b}, @var{a}, @var{w})
## @deftypefnx {} {[@var{h}, @var{w}] =} freqz (@dots{}, @var{Fs})
## @deftypefnx {} {} freqz (@dots{})
##
## Return the complex frequency response @var{h} of the rational IIR filter
## whose numerator and denominator coefficients are @var{b} and @var{a},
## respectively.
##
## The response is evaluated at @var{n} angular frequencies between 0 and
## @ifnottex
## 2*pi.
## @end ifnottex
## @tex
## $2\pi$.
## @end tex
##
## @noindent
## The output value @var{w} is a vector of the frequencies.
##
## If @var{a} is omitted, the denominator is assumed to be 1 (this
## corresponds to a simple FIR filter).
##
## If @var{n} is omitted, a value of 512 is assumed.  For fastest computation,
## @var{n} should factor into a small number of small primes.
##
## If the fourth argument, @qcode{"whole"}, is omitted the response is
## evaluated at frequencies between 0 and
## @ifnottex
## pi.
## @end ifnottex
## @tex
## $\pi$.
## @end tex
##
## @code{freqz (@var{b}, @var{a}, @var{w})}
##
## Evaluate the response at the specific frequencies in the vector @var{w}.
## The values for @var{w} are measured in radians.
##
## @code{[@dots{}] = freqz (@dots{}, @var{Fs})}
##
## Return frequencies in Hz instead of radians assuming a sampling rate
## @var{Fs}.  If you are evaluating the response at specific frequencies
## @var{w}, those frequencies should be requested in Hz rather than radians.
##
## @code{freqz (@dots{})}
##
## Plot the magnitude and phase response of @var{h} rather than returning them.
##
## @seealso{freqz_plot}
## @end deftypefn

function [h_r, f_r] = freqz (b, a, n, region, Fs)

  if (nargin < 1)
    print_usage ();
  elseif (nargin == 1)
    ## Response of an FIR filter.
    a = n = region = Fs = [];
  elseif (nargin == 2)
    ## Response of an IIR filter
    n = region = Fs = [];
  elseif (nargin == 3)
    region = Fs = [];
  elseif (nargin == 4)
    Fs = [];
    if (! ischar (region) && ! isempty (region))
      Fs = region;
      region = [];
    endif
  endif

  if (isempty (b))
    b = 1;
  elseif (! isvector (b))
    error ("freqz: B must be a vector");
  endif
  if (isempty (a))
    a = 1;
  elseif (! isvector (a))
    error ("freqz: A must be a vector");
  endif
  if (isempty (n))
    n = 512;
  elseif (isscalar (n) && n < 1)
    error ("freqz: N must be a positive integer");
  endif
  if (isempty (region))
    if (isreal (b) && isreal (a))
      region = "half";
    else
      region = "whole";
    endif
  endif
  if (isempty (Fs))
    freq_norm = true;
    if (nargout == 0)
      Fs = 2;
    else
      Fs = 2*pi;
    endif
  else
    freq_norm = false;
  endif
  plot_output = (nargout == 0);
  whole_region = strcmp (region, "whole");

  a = a(:);
  b = b(:);

  if (! isscalar (n))
    ## Explicit frequency vector given
    w = f = n;
    if (nargin == 4)
      ## Sampling rate Fs was specified
      w = 2*pi*f/Fs;
    endif
    k = max (length (b), length (a));
    hb = polyval (postpad (b, k), exp (j*w));
    ha = polyval (postpad (a, k), exp (j*w));
  else
    ## polyval(fliplr(P),exp(jw)) is O(p n) and fft(x) is O(n log(n)),
    ## where p is the order of the polynomial P.  For small p it
    ## would be faster to use polyval but in practice the overhead for
    ## polyval is much higher and the little bit of time saved isn't
    ## worth the extra code.
    k = max (length (b), length (a));
    if (k > n/2 && nargout == 0)
      ## Ensure a causal phase response.
      n *= 2 .^ ceil (log2 (2*k/n));
    endif

    if (whole_region)
      N = n;
      if (plot_output)
        f = Fs * (0:n).' / N;    # do 1 more for the plot
      else
        f = Fs * (0:n-1).' / N;
      endif
    else
      N = 2*n;
      if (plot_output)
        n += 1;
      endif
      f = Fs * (0:n-1).' / N;
    endif

    pad_sz = N*ceil (k/N);
    b = postpad (b, pad_sz);
    a = postpad (a, pad_sz);

    hb = zeros (n, 1);
    ha = zeros (n, 1);

    for i = 1:N:pad_sz
      hb += fft (postpad (b(i:i+N-1), N))(1:n);
      ha += fft (postpad (a(i:i+N-1), N))(1:n);
    endfor

  endif

  h = hb ./ ha;

  if (plot_output)
    ## Plot and don't return values.
    if (whole_region && isscalar (n))
      h(end+1) = h(1); # Solution is periodic.  Copy first value to end.
    endif
    freqz_plot (f, h, freq_norm);
  else
    ## Return values and don't plot.
    h_r = h;
    f_r = f;
  endif

endfunction


%!testif HAVE_FFTW # correct values and fft-polyval consistency
%! ## butterworth filter, order 2, cutoff pi/2 radians
%! b = [0.292893218813452  0.585786437626905  0.292893218813452];
%! a = [1  0  0.171572875253810];
%! [h,w] = freqz (b,a,32);
%! assert (h(1),1,10*eps);
%! assert (abs (h(17)).^2,0.5,10*eps);
%! assert (h,freqz (b,a,w),10*eps);  # fft should be consistent with polyval

%!testif HAVE_FFTW # whole-half consistency
%! b = [1 1 1]/3; # 3-sample average
%! [h,w] = freqz (b,1,32,"whole");
%! assert (h(2:16),conj (h(32:-1:18)),20*eps);
%! [h2,w2] = freqz (b,1,16,"half");
%! assert (h(1:16),h2,20*eps);
%! assert (w(1:16),w2,20*eps);

%!testif HAVE_FFTW # Sampling frequency properly interpreted
%! b = [1 1 1]/3; a = [1 0.2];
%! [h,f] = freqz (b,a,16,320);
%! assert (f,[0:15]'*10,10*eps);
%! [h2,f2] = freqz (b,a,[0:15]*10,320);
%! assert (f2,[0:15]*10,10*eps);
%! assert (h,h2.',20*eps);
%! [h3,f3] = freqz (b,a,32,"whole",320);
%! assert (f3,[0:31]'*10,10*eps);

## Test input validation
## FIXME: Need to put tests here and simplify input validation in the main code.