File: movfun.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (685 lines) | stat: -rw-r--r-- 24,990 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
########################################################################
##
## Copyright (C) 2018-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{y} =} movfun (@var{fcn}, @var{x}, @var{wlen})
## @deftypefnx {} {@var{y} =} movfun (@var{fcn}, @var{x}, @var{[@var{nb}, @var{na}}])
## @deftypefnx {} {@var{y} =} movfun (@dots{}, "@var{property}", @var{value})
##
## Apply function @var{fcn} to a moving window of length @var{wlen} on data
## @var{x}.
##
## If @var{wlen} is a scalar, the function @var{fcn} is applied to a moving
## window of length @var{wlen}.  When @var{wlen} is an odd number the window is
## symmetric and includes @w{@code{(@var{wlen} - 1) / 2}}@ elements on either
## side of the central element.  For example, when calculating the output at
## index 5 with a window length of 3, @code{movfun} uses data elements
## @w{@code{[4, 5, 6]}}.  If @var{wlen} is an even number, the window is
## asymmetric and has @w{@code{@var{wlen}/2}}@ elements to the left of the
## central element and @w{@code{@var{wlen}/2 - 1}}@ elements to the right of
## the central element.  For example, when calculating the output at index 5
## with a window length of 4, @code{movfun} uses data elements
## @w{@code{[3, 4, 5, 6]}}.
##
## If @var{wlen} is an array with two elements @w{@code{[@var{nb}, @var{na}]}},
## the function is applied to a moving window @code{-@var{nb}:@var{na}}.  This
## window includes @var{nb} number of elements @emph{before} the current
## element and @var{na} number of elements @emph{after} the current element.
## The current element is always included.  For example, given
## @w{@code{@var{wlen} = [3, 0]}}, the data used to calculate index 5 is
## @w{@code{[2, 3, 4, 5]}}.
##
## During calculations the data input @var{x} is reshaped into a 2-dimensional
## @var{wlen}-by-@var{N} matrix and @var{fcn} is called on this new matrix.
## Therefore, @var{fcn} must accept an array input argument and apply the
## computation along dimension 1, i.e., down the columns of the array.
##
## When applied to an array (possibly multi-dimensional) with @var{n} columns,
## @var{fcn} may return a result in either of two formats: @w{Format 1)}@ an
## array of size 1-by-@var{n}-by-@var{dim3}-by-@dots{}-by-@var{dimN}.  This
## is the typical output format from Octave core functions.  Type
## @code{demo ("movfun", 5)} for an example of this use case.
## @w{Format 2)}@ a row vector of length
## @code{@var{n} * @var{numel_higher_dims}} where @var{numel_higher_dims} is
## @w{@code{prod (size (@var{x})(3:end))}}.  The output of @var{fcn} for the
## i-th input column must be found in the output at indices
## @w{@code{i:@var{n}:(@var{n}*@var{numel_higher_dims})}}.
## This format is useful when concatenating functions into arrays, or when
## using @code{nthargout}.  Type @code{demo ("movfun", 6)} for an example of
## this case.
##
## The calculation can be controlled by specifying @var{property}/@var{value}
## pairs.  Valid properties are
##
## @table @asis
##
## @item @qcode{"dim"}
## Operate along the dimension specified, rather than the default of the first
## non-singleton dimension.
##
## @item @qcode{"Endpoints"}
##
## This property controls how results are calculated at the boundaries
## (@w{endpoints}) of the window.  Possible values are:
##
## @table @asis
## @item @qcode{"shrink"}  (default)
## The window is truncated at the beginning and end of the array to exclude
## elements for which there is no source data.  For example, with a window of
## length 3, @code{@var{y}(1) = @var{fcn} (@var{x}(1:2))}, and
## @code{@var{y}(end) = @var{fcn} (@var{x}(end-1:end))}.
##
## @item @qcode{"discard"}
## Any @var{y} values that use a window extending beyond the original
## data array are deleted.  For example, with a 10-element data vector and a
## window of length 3, the output will contain only 8 elements.  The first
## element would require calculating the function over indices
## @w{@code{[0, 1, 2]}}@ and is therefore discarded.  The last element would
## require calculating the function over indices @w{@code{[9, 10, 11]}}@ and is
## therefore discarded.
##
## @item @qcode{"fill"}
## Any window elements outside the data array are replaced by @code{NaN}.  For
## example, with a window of length 3,
## @code{@var{y}(1) = @var{fcn} ([NaN, @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), NaN])}.
## This option usually results in @var{y} having @code{NaN} values at the
## boundaries, although it is influenced by how @var{fcn} handles @code{NaN},
## and also by the property @qcode{"nancond"}.
##
## @item @var{user_value}
## Any window elements outside the data array are replaced by the specified
## value @var{user_value} which must be a numeric scalar.  For example, with a
## window of length 3,
## @code{@var{y}(1) = @var{fcn} ([@var{user_value}, @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), @var{user_value}])}.
## A common choice for @var{user_value} is 0.
##
## @item @qcode{"same"}
## Any window elements outside the data array are replaced by the value of
## @var{x} at the boundary.  For example, with a window of length 3,
## @code{@var{y}(1) = @var{fcn} ([@var{x}(1), @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), @var{x}(end)])}.
##
## @item @qcode{"periodic"}
## The window is wrapped so that any missing data elements are taken from
## the other side of the data.  For example, with a window of length 3,
## @code{@var{y}(1) = @var{fcn} ([@var{x}(end), @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), @var{x}(1)])}.
##
## @end table
##
## Note that for some of these choices, the window size at the boundaries is
## not the same as for the central part, and @var{fcn} must work in these
## cases.
##
## @item @qcode{"nancond"}
## Controls whether @code{NaN} and @code{NA} values should be included (value:
## @qcode{"includenan"}), or excluded (value: @qcode{"omitnan"}), from the data
## passed to @var{fcn}.  The default is @qcode{"includenan"}.  Caution:
## The @qcode{"omitnan"} option is not yet implemented.
##
## @item @qcode{"outdim"}
## A row vector that selects which dimensions of the calculation will appear
## in the output @var{y}.  This is only useful when @var{fcn} returns an
## N-dimensional array in @w{Format 1}.  The default is to return all output
## dimensions.
##
## @end table
##
## Programming Note: The property @qcode{"outdim"} can be used to save memory
## when the output of @var{fcn} has many dimensions, or when a wrapper to the
## base function that selects the desired outputs is too costly.  When memory
## is not an issue, the easiest way to select output dimensions is to first
## calculate the complete result with @code{movfun} and then filter that result
## with indexing.  If code complexity is not an issue then a wrapper can be
## created using anonymous functions.  For example, if @code{basefcn}
## is a function returning a @var{K}-dimensional row output, and only
## dimension @var{D} is desired, then the following wrapper could be used.
##
## @example
## @group
## @var{fcn} = @@(x) basefcn (x)(:,columns(x) * (@var{D}-1) + (1:columns(x)));
## @var{y} = movfun (@@fcn, @dots{});
## @end group
## @end example
##
## @seealso{movslice, prepad, postpad, permute, reshape}
## @end deftypefn

function y = movfun (fcn, x, wlen, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  valid_bc = {"shrink", "discard", "fill", "same", "periodic"};

  ## Parse input arguments
  parser = inputParser ();
  parser.FunctionName = "movfun";
  parser.addParamValue ("Endpoints", "shrink", ...
    @(x) any (strcmpi (x, valid_bc)) || (isnumeric (x) && isscalar (x)));
  parser.addParamValue ("dim", [], ...
    @(d) isempty (d) || (isscalar (d) && isindex (d, ndims (x))));
  parser.addParamValue ("nancond", "includenan", ...
    @(x) any (strcmpi (x, {"includenan", "omitnan"})));
  parser.addParamValue ("outdim", [], ...
    @(d) isempty (d) || (isvector (d) && isindex (d)));

  parser.parse (varargin{:});
  bc      = parser.Results.Endpoints;   # boundary condition
  dim     = parser.Results.dim;         # dimension to be used as input
  nancond = parser.Results.nancond;     # whether NaN are ignored or not
  outdim  = parser.Results.outdim;      # selected output dimension of fcn
  clear parser
  ## End parse input arguments

  if (isempty (x))
    ## Nothing to do.  Return immediately with empty output same shape as input.
    ## Technically, it would be best to return the correct class, rather than
    ## always "double", but this seems like a lot of work for little gain.
    y = zeros (size (x));
    return;
  endif

  ## If dim was not provided find the first non-singleton dimension.
  szx = size (x);
  if (isempty (dim))
    (dim = find (szx > 1, 1)) || (dim = 1);
  endif
  N = szx(dim);

  ## Calculate slicing indices.  This call also validates WLEN input.
  [slc, C, Cpre, Cpos, win] = movslice (N, wlen);

  ## Use [nb, na] format which makes replaceval_bc() simpler.
  if (isscalar (wlen))
    wlen = [wlen, wlen];
  endif

  omitnan = strcmpi (nancond, "omitnan");
  if (omitnan)
    warning ('movfun: "omitnan" is not yet implemented, using "includenan"');
  endif

  ## Move the desired dim to be the 1st dimension (rows)
  nd    = length (szx);                  # number of dimensions
  dperm = [dim, 1:(dim-1), (dim+1):nd];  # permutation of dimensions
  x     = permute (x, dperm);            # permute dims to first dimension
  ncols = prod (szx(dperm(2:end)));      # rest of dimensions as single column
  x     = reshape (x, N, ncols);         # reshape input

  ## Obtain function for boundary conditions
  if (isnumeric (bc))
    bcfcn = @replaceval_bc;
    bcfcn (true, bc);  # initialize replaceval function with value
  else
    switch (lower (bc))
      case "shrink"
        bcfcn = @shrink_bc;

      case "discard"
        bcfcn = [];
        C -= length (Cpre);
        Cpre = Cpos = [];
        N = length (C);
        szx(dperm(1)) = N;

      case "fill"
        bcfcn = @replaceval_bc;
        bcfcn (true, NaN);

      case "same"
        bcfcn = @same_bc;

      case "periodic"
        bcfcn = @periodic_bc;

    endswitch
  endif

  ## FIXME: Validation doesn't seem to work correctly (noted 12/16/2018).
  ## Validate that outdim makes sense
  fout = fcn (zeros (length (win), 1, class (x)));  # output for window
  yclass = class (fout);                    # record class of fcn output
  noutdim = length (fout);                  # number of output dimensions
  if (! isempty (outdim))
    if (max (outdim) > noutdim)
      error ("Octave:invalid-input-arg", ...
             "movfun: output dimension OUTDIM (%d) is larger than largest available dimension (%d)", ...
             max (outdim), noutdim);
    endif
  else
    outdim = 1:noutdim;
  endif
  soutdim = length (outdim);  # length of selected output dimensions
  ## If noutdim is not one then modify function to handle multiple outputs
  if (noutdim > 1)
    fcn_ = @(x) reshape (fcn (x), columns (x), noutdim)(:, outdim);
  else
    fcn_ = fcn;
  endif

  ## Initialize output array of appropriate size and class.
  y = zeros (N, ncols, soutdim, yclass);
  ## Apply processing to each column
  ## FIXME: Is it faster with cellfun?  Don't think so, but needs testing.
  parfor i = 1:ncols
    y(:,i,:) = movfun_oncol (fcn_, yclass, x(:,i), wlen, bcfcn,
                             slc, C, Cpre, Cpos, win, soutdim);
  endparfor

  ## Restore shape
  y = reshape (y, [szx(dperm), soutdim]);
  y = ipermute (y, [dperm, nd+1]);
  y = squeeze (y);

endfunction

function y = movfun_oncol (fcn, yclass, x, wlen, bcfcn, slcidx, C, Cpre, Cpos, win, odim)

  N = length (Cpre) + length (C) + length (Cpos);
  y = zeros (N, odim, yclass);

  ## Process center of data
  try
    y(C,:) = fcn (x(slcidx));
  catch err
    ## Operation failed, likely because of out-of-memory error for "x(slcidx)".
    if (! strcmp (err.identifier, "Octave:bad-alloc"))
      rethrow (err);
    endif

    ## Try divide and conquer approach with smaller slices of data.
    ## For loops are slow, so don't try too hard with this approach.
    N_SLICES = 8;  # configurable
    idx1 = fix (linspace (1, numel (C), N_SLICES));
    idx2 = fix (linspace (1, columns (slcidx), N_SLICES));
    for i = 1 : N_SLICES-1
      y(C(idx1(i):idx1(i+1)),:) = fcn (x(slcidx(:, idx2(i):idx2(i+1))));
    endfor
  end_try_catch

  ## Process boundaries
  if (! isempty (Cpre))
    y(Cpre,:) = bcfcn (fcn, x, Cpre, win, wlen, odim);
  endif
  if (! isempty (Cpos))
    y(Cpos,:) = bcfcn (fcn, x, Cpos, win, wlen, odim);
  endif

endfunction

## Apply "shrink" boundary conditions
## Function is not applied to any window elements outside the original data.
function y = shrink_bc (fcn, x, idxp, win, wlen, odim)

  N   = length (x);
  idx = idxp + win;
  tf  = (idx > 0) & (idx <= N);  # idx inside boundaries

  n   = length (idxp);
  y   = zeros (n, odim);
  ## FIXME: This nested for loop accounts for 70% of running time.
  ##        Given that "shrink" is the default Endpoint value this
  ##        code needs to be reworked.
  for i = 1:n
    k      = idx(tf(:,i),i);
    y(i,:) = fcn (x(k));
  endfor

endfunction

## Apply replacement value boundary conditions
## Window is padded at beginning and end with user-specified value.
function y = replaceval_bc (fcn, x, idxp, win, wlen, ~)

  persistent substitute;

  ## In-band method to initialize substitute value
  if (islogical (fcn))
    substitute = x;
    return;
  endif

  if (min (idxp) == 1)
    ## pre-pad window
    sz = size (x);
    sz(1) = wlen(1);
    x = [substitute(ones (sz)); x];
    idx = idxp + win + wlen(1);
  else
    ## post-pad window
    sz = size (x);
    sz(1) = wlen(2);
    x = [x; substitute(ones (sz))];
    idx = idxp + win;
  endif

  y = fcn (x(idx));

endfunction

## Apply "same" boundary conditions
## 'y' values outside window are replaced by value of 'x' at the window
## boundary.
function y = same_bc (fcn, x, idxp, win, ~, ~)

  idx          = idxp + win;
  idx(idx < 1) = 1;
  N            = length (x);
  idx(idx > N) = N;
  y            = fcn (x(idx));

endfunction

## Apply "periodic" boundary conditions
## Window wraps around.  Window values outside data array are replaced with
## data from the other end of the array.
function y = periodic_bc (fcn, x, idxp, win, ~, ~)

  N       = length (x);
  idx     = idxp + win;
  tf      = idx < 1;
  idx(tf) = N + idx(tf);
  tf      = idx > N;
  idx(tf) = idx(tf) - N;
  y       = fcn (x(idx));

endfunction


%!demo
%! clf;
%! t  = 2 * pi * linspace (0,1,100).';
%! x  = sin (3 * t);
%! xn = x + 0.1 * randn (size (x));
%! x_s = movfun (@mean, xn, 5, "Endpoints", "shrink");
%! x_p = movfun (@mean, xn, 5, "Endpoints", "periodic");
%! x_m = movfun (@mean, xn, 5, "Endpoints", "same");
%! x_z = movfun (@mean, xn, 5, "Endpoints", 0);
%! x_f = movfun (@mean, xn, 5, "Endpoints", "fill");
%!
%! h = plot (t, xn, "o;noisy signal;",
%!           t, x, "-;true;",
%!           t, x_s, "-;shrink;",
%!           t, x_p, "-;periodic;",
%!           t, x_m, "-;same;",
%!           t, x_z, "-;zero;",
%!           t, x_f, "-;fill;");
%! set (h(1), "markerfacecolor", "auto");
%! set (h(2:end), "linewidth", 3);
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ("moving mean with different boundary conditions");
%! #-----------------------------------------------------------------
%! # Moving mean of noisy sinusoidal function with different boundary
%! # conditions.

%!demo
%! clf;
%! t  = 2 * pi * linspace (0,1,100).';
%! x  = sin (3 * t);
%! xn = x + 0.1 * randn (size (x));
%! nwin = 5;
%! x_ = zeros (rows (x), nwin);
%! wlen = 3 + (1:nwin) * 4;
%! for i = 1:nwin
%!   x_(:,i) = movfun (@mean, xn, wlen(i), "Endpoints", "periodic");
%! endfor
%!
%! h = plot (t, xn, "o",
%!           t, x, "-",
%!           t, x_, "-");
%! set (h(1), "markerfacecolor", "auto");
%! set (h(2:end), "linewidth", 3);
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ({'moving mean with "periodic" boundary conditions',
%!         "and windows of different lengths"});
%! legend (h, {"noisy", "true", strsplit(num2str(wlen)){:}});
%! #-----------------------------------------------------------------
%! # Moving mean of noisy sinusoidal function with periodic boundary conditions
%! # using windows of different lengths.

%!demo
%! clf;
%! t  = linspace (0,1,100).';
%! x  = exp (-(t - [0.1:0.3:1]).^2/2/0.1^2);
%! y  = movfun (@max, x, 15);
%!
%! h = plot (t, x, "-",
%!           t, y, "--");
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ("moving max of several Gaussian functions");
%! #-----------------------------------------------------------------
%! # Moving max of different Gaussian functions.
%! # Illustrates the application of movfun() to inputs with several columns.

%!demo
%! clf;
%! t  = linspace (0,1-1e-2,100).';
%! w  = 2 * pi * 3;
%! x  = sin (w * t);
%! y  = cos (w * t);
%! y_  = movfun (@diff, x, [1 0], "Endpoints", "periodic");
%! ## Is the same as y_ = x(2:end) - x(1:end-1);
%! dt = t(2) - t(1);
%! y_  = y_ / w / dt;
%!
%! h = plot (t, x, "-",
%!           t, y, "-",
%!           t, y_, ":");
%! set (h, "linewidth", 3);
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ("movfun with periodic boundary conditions and asymmetric window");
%! legend (h, {"sin", "cos", "[nb, na]"});
%! #-----------------------------------------------------------------
%! # Backward diff() of sinusoidal function with periodic boundary conditions.
%! # Illustrates the use of asymmetric windows.

%!demo
%! clf;
%! N    = 1e3;
%! wlen = 99;
%! x  = linspace (-1, 1, N).';
%! pp = [-2 0 1 0];
%! y  = polyval (pp, x);
%! yn = y + 0.1 * (abs (y) + 0.5) .* exp (randn (N, 1));
%!
%! st = movfun (@(y) (statistics (y)).', yn, wlen);
%!
%! h = plot (x, y, "-",
%!           x, yn, ".",
%!           x, st(:,[3 6]), "-",
%!           x, st(:,6) + [-1 1].*st(:,7), "-",
%!           x, st(:,[1 2 4 5]), "-");
%! set (h([1 3:4]), "linewidth", 3);  # mean
%! set (h(5:end), "color", "k");
%! axis tight
%! xlabel ("x")
%! ylabel ("y")
%! title ("movfun() with Format 1 output data");
%! legend (h, {"noiseless", "noisy", "mean", "median"})
%! #-----------------------------------------------------------------
%! # Moving window statistics.  The plot highlights mean and median.
%! # Black lines how minimum, first quartile, third quartile, and maximum.
%! # Demo illustrates the use of functions with multidimensional output.

%!demo
%! clf;
%! N    = 1e2;
%! wlen = 9;
%! x  = linspace (-1, 1, N).';
%! pp = [-2 0 1 0];
%! y  = polyval (pp, x);
%! y(:,2) = y + 0.1 * (abs (y) + 0.5) .* exp (randn (N, 1));
%! y(:,1) = -y(:,1) + 0.1 * randn (N, 1);
%!
%! fcn = @(y) [min(y), max(y)];
%! st = movfun (fcn, y, wlen);
%!
%! h = plot (x, y, "o",
%!           x, squeeze (st(:,1,:)), "-",
%!           x, squeeze (st(:,2,:)), "-");
%! axis tight
%! set (h(3:4), "color", get (h(1), "color"));
%! set (h(5:6), "color", get (h(2), "color"));
%! xlabel ("x")
%! ylabel ("y")
%! title ("movfun() with Format 2 output data");
%! legend (h(1:2), {"data1", "data2"})
%! #-----------------------------------------------------------------
%! # Moving min() and max() on the same window.
%! # Demo illustrates the use of functions with flat multidimensional output.

%!test
%! x = (1:10).' + [-3, 0, 4];
%! ctrfun = @(x) x(2,:);
%! valid_bc = {"periodic", 0, "fill", "same"};
%! for bc = valid_bc
%!   assert (movfun (ctrfun, x, 3, "Endpoints", bc{1}), x);
%! endfor
%! x_ = x; x_([1 end],:) = x([2 end],:);
%! assert (movfun (ctrfun, x, 3, "Endpoints", "shrink"), x_);

%!test
%! ## dim == 2, same as transpose
%! x = randi (10, 3);
%! ctrfun = @(x) x(2,:);
%! valid_bc = {"periodic", 0, "fill", "same"};
%! for bc = valid_bc
%!   assert (movfun (ctrfun, x.', 3, "Endpoints", bc{1}, "dim", 2), x.');
%! endfor
%! x_ = x; x_([1 end],:) = x([2 end],:);
%! assert (movfun (ctrfun, x.', 3, "Endpoints", "shrink", "dim", 2), x_.');

%!test
%! x = randi (10, 3, 10, 2);
%! y = movfun (@(x) x(2,:), x, 3, "Endpoints", "same", "dim", 2);
%! assert (x, y);

%!test
%! ## bad zero_bc
%! x = ones (10, 1);
%! y = x; y(1:2) = y([end end-1]) = [0.6;0.8];
%! assert (movfun (@mean, x, 5, "Endpoints", 0), y);

## Asymmetric windows
%!shared x, wlen, wlen02, wlen20, ctrfun, UNO
%! x = (1:10).' + [-3, 0, 4];
%! wlen = [2, 1];
%! wlen02 = [0, 2];
%! wlen20 = [2, 0];
%! ctrfun = @(x) x(wlen(1)+1,:);
%! UNO = ones (7,1);

%!assert (movfun (ctrfun, x, wlen, "Endpoints", "periodic"), x)
%!assert (movfun (ctrfun, x, wlen, "Endpoints", 0), x)
%!assert (movfun (ctrfun, x, wlen, "Endpoints", "fill"), x)
%!assert (movfun (ctrfun, x, wlen, "Endpoints", "same"), x)
## for shorter x, indexing fails
%!error movfun (ctrfun, x, wlen, "Endpoints", "shrink")

%!assert (movfun (@min, UNO, wlen, "Endpoints", "shrink"), UNO)
%!assert (movfun (@min, UNO, wlen02, "Endpoints", "shrink"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "shrink"), UNO)

%!assert (movfun (@min, UNO, wlen02, "Endpoints", "periodic"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "periodic"), UNO)

%!assert (movfun (@max, UNO, wlen02, "Endpoints", 0), UNO)
%!assert (movfun (@max, UNO, wlen20, "Endpoints", 0), UNO)

%!assert (movfun (@min, UNO, wlen02, "Endpoints", "fill"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "fill"), UNO)

%!assert (movfun (@min, UNO, wlen02, "Endpoints", "same"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "same"), UNO)

## Multi-dimensional output
%!assert (size( movfun (@(x) [min(x), max(x)], (1:10).', 3)), [10 2])
%!assert (size( movfun (@(x) [min(x), max(x)], cumsum (ones (10,5),2), 3)),
%!        [10 5 2])
## outdim > dim
%!error movfun (@(x) [min(x), max(x)], (1:10).', 3, "Outdim", 3)

## Test for correct return class based on output of function.
%!test <*63802>
%! x = single (1:10);
%! y = movfun (@mean, x, 3);
%! assert (class (y), 'single');
%! y = movfun (@mean, uint8 (x), 3);
%! assert (class (y), 'double');

## Test calculation along empty dimension
%!assert <*63802> (movfun (@mean, zeros (2,0,3, 'uint8'), 3, 'dim', 2),
%!                 zeros (2,0,3, 'double'))

## Test for correct output shape for dim > 2 and ndims > 2
%!test <*65927>
%! a = reshape (1:30, 5, 3, 2);
%! b1 = cat (3, [1, 6, 11], [16, 21, 26]) + [0, 0.5, 1.5, 2.5, 3.5]';
%! b2 = cat (3, [1:5]', [16:20]') + [0, 2.5, 7.5];
%! b3 = cat (3, [1:5]', [8.5:1:12.5]') + [0, 5, 10];
%! assert (movfun (@mean, a, 2), b1, eps);
%! assert (movfun (@mean, a, 2, 'dim', 1), b1, eps);
%! assert (movfun (@mean, a, 2, 'dim', 2), b2, eps);
%! assert (movfun (@mean, a, 2, 'dim', 3), b3, eps);
%!
%! a2 = cat (4, a, a, a, a);
%! assert (size (movfun (@mean, a2, 2)), [5, 3, 2, 4]);
%! assert (size (movfun (@mean, a2, 2, 'dim', 1)), [5, 3, 2, 4])
%! assert (size (movfun (@mean, a2, 2, 'dim', 2)), [5, 3, 2, 4]);
%! assert (size (movfun (@mean, a2, 2, 'dim', 3)), [5, 3, 2, 4]);
%! assert (size (movfun (@mean, a2, 2, 'dim', 4)), [5, 3, 2, 4]);

## Test input validation
%!error <Invalid call> movfun ()
%!error <Invalid call> movfun (@min)
%!error <Invalid call> movfun (@min, 1)
%!error <WLEN must be .* array of integers> movfun (@min, 1, {1})
%!error <WLEN must be .* array of integers .= 0> movfun (@min, 1, -1)
%!error <WLEN must be .* array of integers> movfun (@min, 1, 1.5)
%!error <WLEN must be . 1> movfun (@min, 1, 1)
%!error <WLEN must be a scalar or 2-element array> movfun (@min, 1, [1, 2, 3])
%!error <WLEN \(3\) must be shorter than length along DIM \(1\)>
%! movfun (@min, 1, 3)
%!error <WLEN \(4\) must be shorter than length along DIM \(1\)>
%! movfun (@min, 1, [4, 1]);
%!error <WLEN \(5\) must be shorter than length along DIM \(1\)>
%! movfun (@min, 1, [1, 5]);
%!warning <"omitnan" is not yet implemented>
%! movfun (@min, 1:3, 3, "nancond", "omitnan");
## FIXME: This test is commented out until OUTDIM validation is clarified.
%!#error <OUTDIM \(5\) is larger than largest available dimension \(3\)>
%! movfun (@min, ones (6,3,4), 3, "outdim", 5);