1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
########################################################################
##
## Copyright (C) 2018-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} movfun (@var{fcn}, @var{x}, @var{wlen})
## @deftypefnx {} {@var{y} =} movfun (@var{fcn}, @var{x}, @var{[@var{nb}, @var{na}}])
## @deftypefnx {} {@var{y} =} movfun (@dots{}, "@var{property}", @var{value})
##
## Apply function @var{fcn} to a moving window of length @var{wlen} on data
## @var{x}.
##
## If @var{wlen} is a scalar, the function @var{fcn} is applied to a moving
## window of length @var{wlen}. When @var{wlen} is an odd number the window is
## symmetric and includes @w{@code{(@var{wlen} - 1) / 2}}@ elements on either
## side of the central element. For example, when calculating the output at
## index 5 with a window length of 3, @code{movfun} uses data elements
## @w{@code{[4, 5, 6]}}. If @var{wlen} is an even number, the window is
## asymmetric and has @w{@code{@var{wlen}/2}}@ elements to the left of the
## central element and @w{@code{@var{wlen}/2 - 1}}@ elements to the right of
## the central element. For example, when calculating the output at index 5
## with a window length of 4, @code{movfun} uses data elements
## @w{@code{[3, 4, 5, 6]}}.
##
## If @var{wlen} is an array with two elements @w{@code{[@var{nb}, @var{na}]}},
## the function is applied to a moving window @code{-@var{nb}:@var{na}}. This
## window includes @var{nb} number of elements @emph{before} the current
## element and @var{na} number of elements @emph{after} the current element.
## The current element is always included. For example, given
## @w{@code{@var{wlen} = [3, 0]}}, the data used to calculate index 5 is
## @w{@code{[2, 3, 4, 5]}}.
##
## During calculations the data input @var{x} is reshaped into a 2-dimensional
## @var{wlen}-by-@var{N} matrix and @var{fcn} is called on this new matrix.
## Therefore, @var{fcn} must accept an array input argument and apply the
## computation along dimension 1, i.e., down the columns of the array.
##
## When applied to an array (possibly multi-dimensional) with @var{n} columns,
## @var{fcn} may return a result in either of two formats: @w{Format 1)}@ an
## array of size 1-by-@var{n}-by-@var{dim3}-by-@dots{}-by-@var{dimN}. This
## is the typical output format from Octave core functions. Type
## @code{demo ("movfun", 5)} for an example of this use case.
## @w{Format 2)}@ a row vector of length
## @code{@var{n} * @var{numel_higher_dims}} where @var{numel_higher_dims} is
## @w{@code{prod (size (@var{x})(3:end))}}. The output of @var{fcn} for the
## i-th input column must be found in the output at indices
## @w{@code{i:@var{n}:(@var{n}*@var{numel_higher_dims})}}.
## This format is useful when concatenating functions into arrays, or when
## using @code{nthargout}. Type @code{demo ("movfun", 6)} for an example of
## this case.
##
## The calculation can be controlled by specifying @var{property}/@var{value}
## pairs. Valid properties are
##
## @table @asis
##
## @item @qcode{"dim"}
## Operate along the dimension specified, rather than the default of the first
## non-singleton dimension.
##
## @item @qcode{"Endpoints"}
##
## This property controls how results are calculated at the boundaries
## (@w{endpoints}) of the window. Possible values are:
##
## @table @asis
## @item @qcode{"shrink"} (default)
## The window is truncated at the beginning and end of the array to exclude
## elements for which there is no source data. For example, with a window of
## length 3, @code{@var{y}(1) = @var{fcn} (@var{x}(1:2))}, and
## @code{@var{y}(end) = @var{fcn} (@var{x}(end-1:end))}.
##
## @item @qcode{"discard"}
## Any @var{y} values that use a window extending beyond the original
## data array are deleted. For example, with a 10-element data vector and a
## window of length 3, the output will contain only 8 elements. The first
## element would require calculating the function over indices
## @w{@code{[0, 1, 2]}}@ and is therefore discarded. The last element would
## require calculating the function over indices @w{@code{[9, 10, 11]}}@ and is
## therefore discarded.
##
## @item @qcode{"fill"}
## Any window elements outside the data array are replaced by @code{NaN}. For
## example, with a window of length 3,
## @code{@var{y}(1) = @var{fcn} ([NaN, @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), NaN])}.
## This option usually results in @var{y} having @code{NaN} values at the
## boundaries, although it is influenced by how @var{fcn} handles @code{NaN},
## and also by the property @qcode{"nancond"}.
##
## @item @var{user_value}
## Any window elements outside the data array are replaced by the specified
## value @var{user_value} which must be a numeric scalar. For example, with a
## window of length 3,
## @code{@var{y}(1) = @var{fcn} ([@var{user_value}, @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), @var{user_value}])}.
## A common choice for @var{user_value} is 0.
##
## @item @qcode{"same"}
## Any window elements outside the data array are replaced by the value of
## @var{x} at the boundary. For example, with a window of length 3,
## @code{@var{y}(1) = @var{fcn} ([@var{x}(1), @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), @var{x}(end)])}.
##
## @item @qcode{"periodic"}
## The window is wrapped so that any missing data elements are taken from
## the other side of the data. For example, with a window of length 3,
## @code{@var{y}(1) = @var{fcn} ([@var{x}(end), @var{x}(1:2)])}, and
## @code{@var{y}(end) = @var{fcn} ([@var{x}(end-1:end), @var{x}(1)])}.
##
## @end table
##
## Note that for some of these choices, the window size at the boundaries is
## not the same as for the central part, and @var{fcn} must work in these
## cases.
##
## @item @qcode{"nancond"}
## Controls whether @code{NaN} and @code{NA} values should be included (value:
## @qcode{"includenan"}), or excluded (value: @qcode{"omitnan"}), from the data
## passed to @var{fcn}. The default is @qcode{"includenan"}. Caution:
## The @qcode{"omitnan"} option is not yet implemented.
##
## @item @qcode{"outdim"}
## A row vector that selects which dimensions of the calculation will appear
## in the output @var{y}. This is only useful when @var{fcn} returns an
## N-dimensional array in @w{Format 1}. The default is to return all output
## dimensions.
##
## @end table
##
## Programming Note: The property @qcode{"outdim"} can be used to save memory
## when the output of @var{fcn} has many dimensions, or when a wrapper to the
## base function that selects the desired outputs is too costly. When memory
## is not an issue, the easiest way to select output dimensions is to first
## calculate the complete result with @code{movfun} and then filter that result
## with indexing. If code complexity is not an issue then a wrapper can be
## created using anonymous functions. For example, if @code{basefcn}
## is a function returning a @var{K}-dimensional row output, and only
## dimension @var{D} is desired, then the following wrapper could be used.
##
## @example
## @group
## @var{fcn} = @@(x) basefcn (x)(:,columns(x) * (@var{D}-1) + (1:columns(x)));
## @var{y} = movfun (@@fcn, @dots{});
## @end group
## @end example
##
## @seealso{movslice, prepad, postpad, permute, reshape}
## @end deftypefn
function y = movfun (fcn, x, wlen, varargin)
if (nargin < 3)
print_usage ();
endif
valid_bc = {"shrink", "discard", "fill", "same", "periodic"};
## Parse input arguments
parser = inputParser ();
parser.FunctionName = "movfun";
parser.addParamValue ("Endpoints", "shrink", ...
@(x) any (strcmpi (x, valid_bc)) || (isnumeric (x) && isscalar (x)));
parser.addParamValue ("dim", [], ...
@(d) isempty (d) || (isscalar (d) && isindex (d, ndims (x))));
parser.addParamValue ("nancond", "includenan", ...
@(x) any (strcmpi (x, {"includenan", "omitnan"})));
parser.addParamValue ("outdim", [], ...
@(d) isempty (d) || (isvector (d) && isindex (d)));
parser.parse (varargin{:});
bc = parser.Results.Endpoints; # boundary condition
dim = parser.Results.dim; # dimension to be used as input
nancond = parser.Results.nancond; # whether NaN are ignored or not
outdim = parser.Results.outdim; # selected output dimension of fcn
clear parser
## End parse input arguments
if (isempty (x))
## Nothing to do. Return immediately with empty output same shape as input.
## Technically, it would be best to return the correct class, rather than
## always "double", but this seems like a lot of work for little gain.
y = zeros (size (x));
return;
endif
## If dim was not provided find the first non-singleton dimension.
szx = size (x);
if (isempty (dim))
(dim = find (szx > 1, 1)) || (dim = 1);
endif
N = szx(dim);
## Calculate slicing indices. This call also validates WLEN input.
[slc, C, Cpre, Cpos, win] = movslice (N, wlen);
## Use [nb, na] format which makes replaceval_bc() simpler.
if (isscalar (wlen))
wlen = [wlen, wlen];
endif
omitnan = strcmpi (nancond, "omitnan");
if (omitnan)
warning ('movfun: "omitnan" is not yet implemented, using "includenan"');
endif
## Move the desired dim to be the 1st dimension (rows)
nd = length (szx); # number of dimensions
dperm = [dim, 1:(dim-1), (dim+1):nd]; # permutation of dimensions
x = permute (x, dperm); # permute dims to first dimension
ncols = prod (szx(dperm(2:end))); # rest of dimensions as single column
x = reshape (x, N, ncols); # reshape input
## Obtain function for boundary conditions
if (isnumeric (bc))
bcfcn = @replaceval_bc;
bcfcn (true, bc); # initialize replaceval function with value
else
switch (lower (bc))
case "shrink"
bcfcn = @shrink_bc;
case "discard"
bcfcn = [];
C -= length (Cpre);
Cpre = Cpos = [];
N = length (C);
szx(dperm(1)) = N;
case "fill"
bcfcn = @replaceval_bc;
bcfcn (true, NaN);
case "same"
bcfcn = @same_bc;
case "periodic"
bcfcn = @periodic_bc;
endswitch
endif
## FIXME: Validation doesn't seem to work correctly (noted 12/16/2018).
## Validate that outdim makes sense
fout = fcn (zeros (length (win), 1, class (x))); # output for window
yclass = class (fout); # record class of fcn output
noutdim = length (fout); # number of output dimensions
if (! isempty (outdim))
if (max (outdim) > noutdim)
error ("Octave:invalid-input-arg", ...
"movfun: output dimension OUTDIM (%d) is larger than largest available dimension (%d)", ...
max (outdim), noutdim);
endif
else
outdim = 1:noutdim;
endif
soutdim = length (outdim); # length of selected output dimensions
## If noutdim is not one then modify function to handle multiple outputs
if (noutdim > 1)
fcn_ = @(x) reshape (fcn (x), columns (x), noutdim)(:, outdim);
else
fcn_ = fcn;
endif
## Initialize output array of appropriate size and class.
y = zeros (N, ncols, soutdim, yclass);
## Apply processing to each column
## FIXME: Is it faster with cellfun? Don't think so, but needs testing.
parfor i = 1:ncols
y(:,i,:) = movfun_oncol (fcn_, yclass, x(:,i), wlen, bcfcn,
slc, C, Cpre, Cpos, win, soutdim);
endparfor
## Restore shape
y = reshape (y, [szx(dperm), soutdim]);
y = ipermute (y, [dperm, nd+1]);
y = squeeze (y);
endfunction
function y = movfun_oncol (fcn, yclass, x, wlen, bcfcn, slcidx, C, Cpre, Cpos, win, odim)
N = length (Cpre) + length (C) + length (Cpos);
y = zeros (N, odim, yclass);
## Process center of data
try
y(C,:) = fcn (x(slcidx));
catch err
## Operation failed, likely because of out-of-memory error for "x(slcidx)".
if (! strcmp (err.identifier, "Octave:bad-alloc"))
rethrow (err);
endif
## Try divide and conquer approach with smaller slices of data.
## For loops are slow, so don't try too hard with this approach.
N_SLICES = 8; # configurable
idx1 = fix (linspace (1, numel (C), N_SLICES));
idx2 = fix (linspace (1, columns (slcidx), N_SLICES));
for i = 1 : N_SLICES-1
y(C(idx1(i):idx1(i+1)),:) = fcn (x(slcidx(:, idx2(i):idx2(i+1))));
endfor
end_try_catch
## Process boundaries
if (! isempty (Cpre))
y(Cpre,:) = bcfcn (fcn, x, Cpre, win, wlen, odim);
endif
if (! isempty (Cpos))
y(Cpos,:) = bcfcn (fcn, x, Cpos, win, wlen, odim);
endif
endfunction
## Apply "shrink" boundary conditions
## Function is not applied to any window elements outside the original data.
function y = shrink_bc (fcn, x, idxp, win, wlen, odim)
N = length (x);
idx = idxp + win;
tf = (idx > 0) & (idx <= N); # idx inside boundaries
n = length (idxp);
y = zeros (n, odim);
## FIXME: This nested for loop accounts for 70% of running time.
## Given that "shrink" is the default Endpoint value this
## code needs to be reworked.
for i = 1:n
k = idx(tf(:,i),i);
y(i,:) = fcn (x(k));
endfor
endfunction
## Apply replacement value boundary conditions
## Window is padded at beginning and end with user-specified value.
function y = replaceval_bc (fcn, x, idxp, win, wlen, ~)
persistent substitute;
## In-band method to initialize substitute value
if (islogical (fcn))
substitute = x;
return;
endif
if (min (idxp) == 1)
## pre-pad window
sz = size (x);
sz(1) = wlen(1);
x = [substitute(ones (sz)); x];
idx = idxp + win + wlen(1);
else
## post-pad window
sz = size (x);
sz(1) = wlen(2);
x = [x; substitute(ones (sz))];
idx = idxp + win;
endif
y = fcn (x(idx));
endfunction
## Apply "same" boundary conditions
## 'y' values outside window are replaced by value of 'x' at the window
## boundary.
function y = same_bc (fcn, x, idxp, win, ~, ~)
idx = idxp + win;
idx(idx < 1) = 1;
N = length (x);
idx(idx > N) = N;
y = fcn (x(idx));
endfunction
## Apply "periodic" boundary conditions
## Window wraps around. Window values outside data array are replaced with
## data from the other end of the array.
function y = periodic_bc (fcn, x, idxp, win, ~, ~)
N = length (x);
idx = idxp + win;
tf = idx < 1;
idx(tf) = N + idx(tf);
tf = idx > N;
idx(tf) = idx(tf) - N;
y = fcn (x(idx));
endfunction
%!demo
%! clf;
%! t = 2 * pi * linspace (0,1,100).';
%! x = sin (3 * t);
%! xn = x + 0.1 * randn (size (x));
%! x_s = movfun (@mean, xn, 5, "Endpoints", "shrink");
%! x_p = movfun (@mean, xn, 5, "Endpoints", "periodic");
%! x_m = movfun (@mean, xn, 5, "Endpoints", "same");
%! x_z = movfun (@mean, xn, 5, "Endpoints", 0);
%! x_f = movfun (@mean, xn, 5, "Endpoints", "fill");
%!
%! h = plot (t, xn, "o;noisy signal;",
%! t, x, "-;true;",
%! t, x_s, "-;shrink;",
%! t, x_p, "-;periodic;",
%! t, x_m, "-;same;",
%! t, x_z, "-;zero;",
%! t, x_f, "-;fill;");
%! set (h(1), "markerfacecolor", "auto");
%! set (h(2:end), "linewidth", 3);
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ("moving mean with different boundary conditions");
%! #-----------------------------------------------------------------
%! # Moving mean of noisy sinusoidal function with different boundary
%! # conditions.
%!demo
%! clf;
%! t = 2 * pi * linspace (0,1,100).';
%! x = sin (3 * t);
%! xn = x + 0.1 * randn (size (x));
%! nwin = 5;
%! x_ = zeros (rows (x), nwin);
%! wlen = 3 + (1:nwin) * 4;
%! for i = 1:nwin
%! x_(:,i) = movfun (@mean, xn, wlen(i), "Endpoints", "periodic");
%! endfor
%!
%! h = plot (t, xn, "o",
%! t, x, "-",
%! t, x_, "-");
%! set (h(1), "markerfacecolor", "auto");
%! set (h(2:end), "linewidth", 3);
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ({'moving mean with "periodic" boundary conditions',
%! "and windows of different lengths"});
%! legend (h, {"noisy", "true", strsplit(num2str(wlen)){:}});
%! #-----------------------------------------------------------------
%! # Moving mean of noisy sinusoidal function with periodic boundary conditions
%! # using windows of different lengths.
%!demo
%! clf;
%! t = linspace (0,1,100).';
%! x = exp (-(t - [0.1:0.3:1]).^2/2/0.1^2);
%! y = movfun (@max, x, 15);
%!
%! h = plot (t, x, "-",
%! t, y, "--");
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ("moving max of several Gaussian functions");
%! #-----------------------------------------------------------------
%! # Moving max of different Gaussian functions.
%! # Illustrates the application of movfun() to inputs with several columns.
%!demo
%! clf;
%! t = linspace (0,1-1e-2,100).';
%! w = 2 * pi * 3;
%! x = sin (w * t);
%! y = cos (w * t);
%! y_ = movfun (@diff, x, [1 0], "Endpoints", "periodic");
%! ## Is the same as y_ = x(2:end) - x(1:end-1);
%! dt = t(2) - t(1);
%! y_ = y_ / w / dt;
%!
%! h = plot (t, x, "-",
%! t, y, "-",
%! t, y_, ":");
%! set (h, "linewidth", 3);
%! axis tight
%! xlabel ("time");
%! ylabel ("signal");
%! title ("movfun with periodic boundary conditions and asymmetric window");
%! legend (h, {"sin", "cos", "[nb, na]"});
%! #-----------------------------------------------------------------
%! # Backward diff() of sinusoidal function with periodic boundary conditions.
%! # Illustrates the use of asymmetric windows.
%!demo
%! clf;
%! N = 1e3;
%! wlen = 99;
%! x = linspace (-1, 1, N).';
%! pp = [-2 0 1 0];
%! y = polyval (pp, x);
%! yn = y + 0.1 * (abs (y) + 0.5) .* exp (randn (N, 1));
%!
%! st = movfun (@(y) (statistics (y)).', yn, wlen);
%!
%! h = plot (x, y, "-",
%! x, yn, ".",
%! x, st(:,[3 6]), "-",
%! x, st(:,6) + [-1 1].*st(:,7), "-",
%! x, st(:,[1 2 4 5]), "-");
%! set (h([1 3:4]), "linewidth", 3); # mean
%! set (h(5:end), "color", "k");
%! axis tight
%! xlabel ("x")
%! ylabel ("y")
%! title ("movfun() with Format 1 output data");
%! legend (h, {"noiseless", "noisy", "mean", "median"})
%! #-----------------------------------------------------------------
%! # Moving window statistics. The plot highlights mean and median.
%! # Black lines how minimum, first quartile, third quartile, and maximum.
%! # Demo illustrates the use of functions with multidimensional output.
%!demo
%! clf;
%! N = 1e2;
%! wlen = 9;
%! x = linspace (-1, 1, N).';
%! pp = [-2 0 1 0];
%! y = polyval (pp, x);
%! y(:,2) = y + 0.1 * (abs (y) + 0.5) .* exp (randn (N, 1));
%! y(:,1) = -y(:,1) + 0.1 * randn (N, 1);
%!
%! fcn = @(y) [min(y), max(y)];
%! st = movfun (fcn, y, wlen);
%!
%! h = plot (x, y, "o",
%! x, squeeze (st(:,1,:)), "-",
%! x, squeeze (st(:,2,:)), "-");
%! axis tight
%! set (h(3:4), "color", get (h(1), "color"));
%! set (h(5:6), "color", get (h(2), "color"));
%! xlabel ("x")
%! ylabel ("y")
%! title ("movfun() with Format 2 output data");
%! legend (h(1:2), {"data1", "data2"})
%! #-----------------------------------------------------------------
%! # Moving min() and max() on the same window.
%! # Demo illustrates the use of functions with flat multidimensional output.
%!test
%! x = (1:10).' + [-3, 0, 4];
%! ctrfun = @(x) x(2,:);
%! valid_bc = {"periodic", 0, "fill", "same"};
%! for bc = valid_bc
%! assert (movfun (ctrfun, x, 3, "Endpoints", bc{1}), x);
%! endfor
%! x_ = x; x_([1 end],:) = x([2 end],:);
%! assert (movfun (ctrfun, x, 3, "Endpoints", "shrink"), x_);
%!test
%! ## dim == 2, same as transpose
%! x = randi (10, 3);
%! ctrfun = @(x) x(2,:);
%! valid_bc = {"periodic", 0, "fill", "same"};
%! for bc = valid_bc
%! assert (movfun (ctrfun, x.', 3, "Endpoints", bc{1}, "dim", 2), x.');
%! endfor
%! x_ = x; x_([1 end],:) = x([2 end],:);
%! assert (movfun (ctrfun, x.', 3, "Endpoints", "shrink", "dim", 2), x_.');
%!test
%! x = randi (10, 3, 10, 2);
%! y = movfun (@(x) x(2,:), x, 3, "Endpoints", "same", "dim", 2);
%! assert (x, y);
%!test
%! ## bad zero_bc
%! x = ones (10, 1);
%! y = x; y(1:2) = y([end end-1]) = [0.6;0.8];
%! assert (movfun (@mean, x, 5, "Endpoints", 0), y);
## Asymmetric windows
%!shared x, wlen, wlen02, wlen20, ctrfun, UNO
%! x = (1:10).' + [-3, 0, 4];
%! wlen = [2, 1];
%! wlen02 = [0, 2];
%! wlen20 = [2, 0];
%! ctrfun = @(x) x(wlen(1)+1,:);
%! UNO = ones (7,1);
%!assert (movfun (ctrfun, x, wlen, "Endpoints", "periodic"), x)
%!assert (movfun (ctrfun, x, wlen, "Endpoints", 0), x)
%!assert (movfun (ctrfun, x, wlen, "Endpoints", "fill"), x)
%!assert (movfun (ctrfun, x, wlen, "Endpoints", "same"), x)
## for shorter x, indexing fails
%!error movfun (ctrfun, x, wlen, "Endpoints", "shrink")
%!assert (movfun (@min, UNO, wlen, "Endpoints", "shrink"), UNO)
%!assert (movfun (@min, UNO, wlen02, "Endpoints", "shrink"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "shrink"), UNO)
%!assert (movfun (@min, UNO, wlen02, "Endpoints", "periodic"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "periodic"), UNO)
%!assert (movfun (@max, UNO, wlen02, "Endpoints", 0), UNO)
%!assert (movfun (@max, UNO, wlen20, "Endpoints", 0), UNO)
%!assert (movfun (@min, UNO, wlen02, "Endpoints", "fill"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "fill"), UNO)
%!assert (movfun (@min, UNO, wlen02, "Endpoints", "same"), UNO)
%!assert (movfun (@min, UNO, wlen20, "Endpoints", "same"), UNO)
## Multi-dimensional output
%!assert (size( movfun (@(x) [min(x), max(x)], (1:10).', 3)), [10 2])
%!assert (size( movfun (@(x) [min(x), max(x)], cumsum (ones (10,5),2), 3)),
%! [10 5 2])
## outdim > dim
%!error movfun (@(x) [min(x), max(x)], (1:10).', 3, "Outdim", 3)
## Test for correct return class based on output of function.
%!test <*63802>
%! x = single (1:10);
%! y = movfun (@mean, x, 3);
%! assert (class (y), 'single');
%! y = movfun (@mean, uint8 (x), 3);
%! assert (class (y), 'double');
## Test calculation along empty dimension
%!assert <*63802> (movfun (@mean, zeros (2,0,3, 'uint8'), 3, 'dim', 2),
%! zeros (2,0,3, 'double'))
## Test for correct output shape for dim > 2 and ndims > 2
%!test <*65927>
%! a = reshape (1:30, 5, 3, 2);
%! b1 = cat (3, [1, 6, 11], [16, 21, 26]) + [0, 0.5, 1.5, 2.5, 3.5]';
%! b2 = cat (3, [1:5]', [16:20]') + [0, 2.5, 7.5];
%! b3 = cat (3, [1:5]', [8.5:1:12.5]') + [0, 5, 10];
%! assert (movfun (@mean, a, 2), b1, eps);
%! assert (movfun (@mean, a, 2, 'dim', 1), b1, eps);
%! assert (movfun (@mean, a, 2, 'dim', 2), b2, eps);
%! assert (movfun (@mean, a, 2, 'dim', 3), b3, eps);
%!
%! a2 = cat (4, a, a, a, a);
%! assert (size (movfun (@mean, a2, 2)), [5, 3, 2, 4]);
%! assert (size (movfun (@mean, a2, 2, 'dim', 1)), [5, 3, 2, 4])
%! assert (size (movfun (@mean, a2, 2, 'dim', 2)), [5, 3, 2, 4]);
%! assert (size (movfun (@mean, a2, 2, 'dim', 3)), [5, 3, 2, 4]);
%! assert (size (movfun (@mean, a2, 2, 'dim', 4)), [5, 3, 2, 4]);
## Test input validation
%!error <Invalid call> movfun ()
%!error <Invalid call> movfun (@min)
%!error <Invalid call> movfun (@min, 1)
%!error <WLEN must be .* array of integers> movfun (@min, 1, {1})
%!error <WLEN must be .* array of integers .= 0> movfun (@min, 1, -1)
%!error <WLEN must be .* array of integers> movfun (@min, 1, 1.5)
%!error <WLEN must be . 1> movfun (@min, 1, 1)
%!error <WLEN must be a scalar or 2-element array> movfun (@min, 1, [1, 2, 3])
%!error <WLEN \(3\) must be shorter than length along DIM \(1\)>
%! movfun (@min, 1, 3)
%!error <WLEN \(4\) must be shorter than length along DIM \(1\)>
%! movfun (@min, 1, [4, 1]);
%!error <WLEN \(5\) must be shorter than length along DIM \(1\)>
%! movfun (@min, 1, [1, 5]);
%!warning <"omitnan" is not yet implemented>
%! movfun (@min, 1:3, 3, "nancond", "omitnan");
## FIXME: This test is commented out until OUTDIM validation is clarified.
%!#error <OUTDIM \(5\) is larger than largest available dimension \(3\)>
%! movfun (@min, ones (6,3,4), 3, "outdim", 5);
|