File: periodogram.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (220 lines) | stat: -rw-r--r-- 6,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{Pxx}, @var{w}] =} periodogram (@var{x})
## @deftypefnx {} {[@var{Pxx}, @var{w}] =} periodogram (@var{x}, @var{win})
## @deftypefnx {} {[@var{Pxx}, @var{w}] =} periodogram (@var{x}, @var{win}, @var{nfft})
## @deftypefnx {} {[@var{Pxx}, @var{f}] =} periodogram (@var{x}, @var{win}, @var{nfft}, @var{Fs})
## @deftypefnx {} {[@var{Pxx}, @var{f}] =} periodogram (@dots{}, "@var{range}")
## @deftypefnx {} {} periodogram (@dots{})
## Return the periodogram (Power Spectral Density) of @var{x}.
##
## The possible inputs are:
##
## @table @var
## @item x
##
## data vector.  If @var{x} is real-valued a one-sided spectrum is estimated.
## If @var{x} is complex-valued, or @qcode{"@var{range}"} specifies
## @qcode{"@nospell{twosided}"}, the full spectrum is estimated.
##
## @item win
## window weight data.  If window is empty or unspecified a default rectangular
## window is used.  Otherwise, the window is applied to the signal
## (@code{@var{x} .* @var{win}}) before computing the periodogram.  The window
## data must be a vector of the same length as @var{x}.
##
## @item nfft
## number of frequency bins.  The default is 256 or the next higher power of
## 2 greater than the length of @var{x}
## (@code{max (256, 2.^nextpow2 (length (x)))}).  If @var{nfft} is greater
## than the length of the input then @var{x} will be zero-padded to the length
## of @var{nfft}.
##
## @item Fs
## sampling rate.  The default is 1.
##
## @item range
## range of spectrum.  @qcode{"@nospell{onesided}"} computes spectrum from
## [0:nfft/2+1].  @qcode{"@nospell{twosided}"} computes spectrum from
## [0:nfft-1].
## @end table
##
## The optional second output @var{w} are the normalized angular frequencies.
## For a one-sided calculation @var{w} is in the range [0, pi] if @var{nfft}
## is even and [0, pi) if @var{nfft} is odd.  Similarly, for a two-sided
## calculation @var{w} is in the range [0, 2*pi] or [0, 2*pi) depending on
## @var{nfft}.
##
## If a sampling frequency is specified, @var{Fs}, then the output frequencies
## @var{f} will be in the range [0, @var{Fs}/2] or [0, @var{Fs}/2) for
## one-sided calculations.  For two-sided calculations the range will be
## [0, @var{Fs}).
##
## When called with no outputs the periodogram is immediately plotted in the
## current figure window.
## @seealso{fft}
## @end deftypefn

function [pxx, f] = periodogram (x, varargin)

  ## check input arguments
  if (nargin < 1 || nargin > 5)
    print_usage ();
  endif

  nfft = fs = range = window = [];
  j = 2;
  for k = 1:length (varargin)
    if (ischar (varargin{k}))
      range = varargin{k};
    else
      switch (j)
        case 2
          window = varargin{k};
        case 3
          nfft   = varargin{k};
        case 4
          fs     = varargin{k};
      endswitch
      j += 1;
    endif
  endfor

  if (! isvector (x))
    error ("periodogram: X must be a real or complex vector");
  endif
  x = x(:);  # Use column vectors from now on

  n = rows (x);

  if (! isempty (window))
    if (! isvector (window) || length (window) != n)
      error ("periodogram: WIN must be a vector of the same length as X");
    endif
    window = window(:);
    x .*= window;
  endif

  if (isempty (nfft))
    nfft = max (256, 2.^nextpow2 (n));
  elseif (! isscalar (nfft))
    error ("periodogram: NFFT must be a scalar");
  endif

  use_w_freq = isempty (fs);
  if (! use_w_freq && ! isscalar (fs))
    error ("periodogram: FS must be a scalar");
  endif

  if (strcmpi (range, "onesided"))
    range = 1;
  elseif (strcmpi (range, "twosided"))
    range = 2;
  elseif (strcmpi (range, "centered"))
    error ('periodogram: "centered" range type is not implemented');
  else
    range = 2-isreal (x);
  endif

  ## compute periodogram

  if (n > nfft)
    Pxx = 0;
    rr = rem (length (x), nfft);
    if (rr)
      x = [x(:); zeros(nfft-rr, 1)];
    endif
    x = sum (reshape (x, nfft, []), 2);
  endif

  if (! isempty (window))
    n = sumsq (window);
  endif
  Pxx = (abs (fft (x, nfft))) .^ 2 / n;

  if (use_w_freq)
    Pxx /= 2*pi;
  else
    Pxx /= fs;
  endif

  ## generate output arguments

  if (range == 1)  # onesided
    if (! rem (nfft,2))  # nfft is even
      psd_len = nfft/2+1;
      Pxx = Pxx(1:psd_len) + [0; Pxx(nfft:-1:psd_len+1); 0];
    else                 # nfft is odd
      psd_len = (nfft+1)/2;
      Pxx = Pxx(1:psd_len) + [0; Pxx(nfft:-1:psd_len+1)];
    endif
  endif

  if (nargout != 1)
    if (range == 1)
      f = (0:nfft/2)' / nfft;
    elseif (range == 2)
      f = (0:nfft-1)' / nfft;
    endif
    if (use_w_freq)
      f *= 2*pi;  # generate w=2*pi*f
    else
      f *= fs;
    endif
  endif

  if (nargout == 0)
    if (use_w_freq)
      plot (f/(2*pi), 10*log10 (Pxx));
      xlabel ("normalized frequency [x pi rad]");
      ylabel ("Power density [dB/rad/sample]");
    else
      plot (f, 10*log10 (Pxx));
      xlabel ("frequency [Hz]");
      ylabel ("Power density [dB/Hz]");
    endif
    grid on;
    title ("Periodogram Power Spectral Density Estimate");
  else
    pxx = Pxx;
  endif

endfunction


## FIXME: Need some functional tests


## Test input validation
%!error <Invalid call> periodogram ()
%!error <Invalid call> periodogram (1,2,3,4,5,6)
%!error <X must be a real or complex vector> periodogram (ones (2,2))
%!error <WIN must be a vector.*same length> periodogram (1:5, ones (2,2))
%!error <WIN must be a vector.*same length> periodogram (1:5, 1:6)
%!error <NFFT must be a scalar> periodogram (1:5, 1:5, 1:5)
%!error <FS must be a scalar> periodogram (1:5, [], [], 1:5)
%!error <"centered" range type is not implemented> periodogram (1:5, "centered")