1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} bicg (@var{A}, @var{b})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0}, @dots{})
## @deftypefnx {} {@var{x} =} bicg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} bicg (@var{A}, @var{b}, @dots{})
## Solve the linear system of equations
## @w{@code{@var{A} * @var{x} = @var{b}}}@ by means of the Bi-Conjugate
## Gradient iterative method.
##
## The input arguments are:
##
## @itemize
##
## @item @var{A} is the matrix of the linear system and it must be square.
## @var{A} can be passed as a matrix, function handle, or inline function
## @code{Afcn} such that @w{@code{Afcn (x, "notransp") = A * x}}@ and
## @w{@code{Afcn (x, "transp") = A' * x}}. Additional parameters to
## @code{Afcn} may be passed after @var{x0}.
##
## @item @var{b} is the right-hand side vector. It must be a column vector
## with the same number of rows as @var{A}.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @w{@code{@var{b} - @var{A} * @var{x}}}. The iteration stops if
## @w{@code{norm (@var{b} - @var{A} * @var{x})} @leq{}
## @w{@code{@var{tol} * norm (@var{b})}}}.
## If @var{tol} is omitted or empty, then a tolerance of 1e-6 is used.
##
## @item
## @var{maxit} is the maximum allowed number of iterations; if @var{maxit}
## is omitted or empty then a value of 20 is used.
##
## @item
## @var{M1}, @var{M2} are the preconditioners. The preconditioner @var{M} is
## given as @code{@var{M} = @var{M1} * @var{M2}}. Both @var{M1} and @var{M2}
## can be passed as a matrix or as a function handle or inline function
## @code{g} such that
## @w{@code{g (@var{x}, "notransp") = @var{M1} \ @var{x}}}@ or
## @w{@code{g (@var{x}, "notransp") = @var{M2} \ @var{x}}}@ and
## @w{@code{g (@var{x}, "transp") = @var{M1}' \ @var{x}}}@ or
## @w{@code{g (@var{x}, "transp") = @var{M2}' \ @var{x}}}.
## If @var{M1} is omitted or empty, then preconditioning is not applied.
## The preconditioned system is theoretically equivalent to applying the
## @code{bicg} method to the linear system
## @code{inv (@var{M1}) * A * inv (@var{M2}) * @var{y} = inv
## (@var{M1}) * @var{b}} and
## @code{inv (@var{M2'}) * A' * inv (@var{M1'}) * @var{z} =
## inv (@var{M2'}) * @var{b}} and then setting
## @code{@var{x} = inv (@var{M2}) * @var{y}}.
##
## @item
## @var{x0} is the initial guess. If @var{x0} is omitted or empty then the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## Any arguments which follow @var{x0} are treated as parameters, and passed in
## an appropriate manner to any of the functions (@var{Afcn} or @var{Mfcn}) or
## that have been given to @code{bicg}.
##
## The output parameters are:
##
## @itemize
##
## @item
## @var{x} is the computed approximation to the solution of
## @w{@code{@var{A} * @var{x} = @var{b}}}. If the algorithm did not converge,
## then @var{x} is the iteration which has the minimum residual.
##
## @item
## @var{flag} indicates the exit status:
##
## @itemize
## @item 0: The algorithm converged to within the prescribed tolerance.
##
## @item 1: The algorithm did not converge and it reached the maximum number of
## iterations.
##
## @item 2: The preconditioner matrix is singular.
##
## @item 3: The algorithm stagnated, i.e., the absolute value of the
## difference between the current iteration @var{x} and the previous is less
## than @code{eps * norm (@var{x},2)}.
##
## @item 4: The algorithm could not continue because intermediate values
## became too small or too large for reliable computation.
## @end itemize
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} is the iteration which @var{x} is computed.
##
## @item
## @var{resvec} is a vector containing the residual at each iteration.
## The total number of iterations performed is given by
## @code{length (@var{resvec}) - 1}.
## @end itemize
##
## Consider a trivial problem with a tridiagonal matrix
##
## @example
## @group
## n = 20;
## A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n)) + ...
## toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
## sparse (1, 2, 1, 1, n) * n / 2);
## b = A * ones (n, 1);
## restart = 5;
## [M1, M2] = ilu (A); # in this tridiag case, it corresponds to lu (A)
## M = M1 * M2;
## Afcn = @@(x, string) strcmp (string, "notransp") * (A * x) + ...
## strcmp (string, "transp") * (A' * x);
## Mfcn = @@(x, string) strcmp (string, "notransp") * (M \ x) + ...
## strcmp (string, "transp") * (M' \ x);
## M1fcn = @@(x, string) strcmp (string, "notransp") * (M1 \ x) + ...
## strcmp (string, "transp") * (M1' \ x);
## M2fcn = @@(x, string) strcmp (string, "notransp") * (M2 \ x) + ...
## strcmp (string, "transp") * (M2' \ x);
## @end group
## @end example
##
## @sc{Example 1:} simplest usage of @code{bicg}
##
## @example
## x = bicg (A, b)
## @end example
##
## @sc{Example 2:} @code{bicg} with a function that computes
## @code{@var{A}*@var{x}} and @code{@var{A'}*@var{x}}
##
## @example
## x = bicg (Afcn, b, [], n)
## @end example
##
## @sc{Example 3:} @code{bicg} with a preconditioner matrix @var{M}
##
## @example
## x = bicg (A, b, 1e-6, n, M)
## @end example
##
## @sc{Example 4:} @code{bicg} with a function as preconditioner
##
## @example
## x = bicg (Afcn, b, 1e-6, n, Mfcn)
## @end example
##
## @sc{Example 5:} @code{bicg} with preconditioner matrices @var{M1}
## and @var{M2}
##
## @example
## x = bicg (A, b, 1e-6, n, M1, M2)
## @end example
##
## @sc{Example 6:} @code{bicg} with functions as preconditioners
##
## @example
## x = bicg (Afcn, b, 1e-6, n, M1fcn, M2fcn)
## @end example
##
## @sc{Example 7:} @code{bicg} with as input a function requiring an argument
##
## @example
## @group
## function y = Ap (A, x, string, z)
## ## compute A^z * x or (A^z)' * x
## y = x;
## if (strcmp (string, "notransp"))
## for i = 1:z
## y = A * y;
## endfor
## elseif (strcmp (string, "transp"))
## for i = 1:z
## y = A' * y;
## endfor
## endif
## endfunction
##
## Apfcn = @@(x, string, p) Ap (A, x, string, p);
## x = bicg (Apfcn, b, [], [], [], [], [], 2);
## @end group
## @end example
##
## Reference:
##
## @nospell{Y. Saad}, @cite{Iterative Methods for Sparse Linear Systems},
## Second edition, 2003, SIAM.
##
## @seealso{bicgstab, cgs, gmres, pcg, qmr, tfqmr}
## @end deftypefn
function [x_min, flag, relres, iter_min, resvec] = ...
bicg (A, b, tol = [], maxit = [], M1 = [], M2 = [], x0 = [], varargin)
[Afcn, M1fcn, M2fcn] = __alltohandles__ (A, b, M1, M2, "bicg");
[tol, maxit, x0] = __default__input__ ({1e-06, min(rows(b), 20), ...
zeros(rows (b),1)}, tol, maxit, x0);
if (columns (b) == 2)
c = b(:,2);
b = b(:,1);
else
c = b;
endif
norm_b = norm (b, 2);
if (norm_b == 0) # the only (only iff det (A) == 0) solution is x = 0
if (nargout < 2)
printf ("The right hand side vector is all zero so bicg\n")
printf ("returned an all zero solution without iterating.\n")
endif
x_min = zeros (numel (b), 1);
flag = 0;
relres = 0;
iter_min = 0;
resvec = 0;
return;
endif
x = x_min = x_pr = x0;
iter = iter_min = 0;
flag = 1; # Default flag is "maximum number of iterations reached"
resvec = zeros (maxit + 1, 1);
r0 = b - Afcn (x, "notransp", varargin{:}); # Residual of the system
s0 = c - Afcn (x, "transp", varargin{:}); # Res. of the "dual system"
resvec(1) = norm (r0, 2);
try
warning ("error", "Octave:singular-matrix", "local");
prec_r0 = M1fcn (r0, "notransp", varargin{:}); # r0 preconditioned
prec_s0 = s0;
prec_r0 = M2fcn (prec_r0, "notransp", varargin{:});
prec_s0 = M2fcn (prec_s0, "transp", varargin{:});
prec_s0 = M1fcn (prec_s0, "transp", varargin{:}); # s0 preconditioned
p = prec_r0; # Direction of the system
q = prec_s0; # Direction of the "dual system"
catch
flag = 2;
end_try_catch
while ((flag != 2) && (iter < maxit) && (resvec(iter+1) >= norm_b * tol))
v = Afcn (p, "notransp", varargin{:});
prod_qv = q' * v;
alpha = (s0' * prec_r0);
if (abs (prod_qv) <= eps * abs (alpha))
flag = 4;
break;
endif
alpha ./= prod_qv;
x += alpha * p;
prod_rs = (s0' * prec_r0); # Product between r0 and s0
r0 -= alpha * v;
s0 -= conj (alpha) * Afcn (q, "transp", varargin{:});
prec_r0 = M1fcn (r0, "notransp", varargin{:});
prec_s0 = s0;
prec_r0 = M2fcn (prec_r0, "notransp", varargin{:});
beta = s0' * prec_r0;
if (abs (prod_rs) <= abs (beta))
flag = 4;
break;
endif
beta ./= prod_rs;
prec_s0 = M2fcn (prec_s0, "transp", varargin{:});
prec_s0 = M1fcn (prec_s0, "transp", varargin{:});
iter += 1;
resvec(iter+1) = norm (r0);
if (resvec(iter+1) <= resvec(iter_min+1))
x_min = x;
iter_min = iter;
endif
if (norm (x - x_pr) <= norm (x) * eps)
flag = 3;
break;
endif
p = prec_r0 + beta*p;
q = prec_s0 + conj (beta) * q;
endwhile
resvec = resvec(1:iter+1,1);
if (flag == 2)
relres = 1;
else
relres = resvec(iter_min+1) / norm_b;
endif
if ((flag == 1) && (relres <= tol))
flag = 0;
endif
if (nargout < 2)
switch (flag)
case 0
printf ("bicg converged at iteration %i ", iter_min);
printf ("to a solution with relative residual %e\n", relres);
case 1
printf ("bicg stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the maximum number of iterations was reached. ");
printf ("The iterate returned (number %i) has ", iter_min);
printf ("relative residual %e\n", relres);
case 2
printf ("bicg stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the preconditioner matrix is singular.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
case 3
printf ("bicg stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the method stagnated.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
case 4
printf ("bicg stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the method can't continue.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
endswitch
endif
endfunction
%!demo
%! ## simplest use case
%! n = 20;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n)) + ...
%! toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%! sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.1 * eye (n));
%! M = M1 * M2;
%! x = bicg (A, b, [], n);
%! function y = Ap (A, x, string, z)
%! ## compute A^z * x or (A^z)' * x
%! y = x;
%! if (strcmp (string, "notransp"))
%! for i = 1:z
%! y = A * y;
%! endfor
%! elseif (strcmp (string, "transp"))
%! for i = 1:z
%! y = A' * y;
%! endfor
%! endif
%! endfunction
%!
%! Afcn = @(x, string) Ap (A, x, string, 1);
%! x = bicg (Afcn, b, [], n);
%! x = bicg (A, b, 1e-6, n, M);
%! x = bicg (A, b, 1e-6, n, M1, M2);
%! function y = Mfcn (M, x, string)
%! if (strcmp (string, "notransp"))
%! y = M \ x;
%! else
%! y = M' \ x;
%! endif
%! endfunction
%!
%! M1fcn = @(x, string) Mfcn (M, x, string);
%! x = bicg (Afcn, b, 1e-6, n, M1fcn);
%! M1fcn = @(x, string) Mfcn (M1, x, string);
%! M2fcn = @(x, string) Mfcn (M2, x, string);
%! x = bicg (Afcn, b, 1e-6, n, M1fcn, M2fcn);
%! Afcn = @(x, string, p) Ap (A, x, string, p);
%! ## Solution of A^2 * x = b
%! x = bicg (Afcn, b, [], 2*n, [], [], [], 2);
%!test
%! ## Check that all type of inputs work
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = A * ones (5, 1);
%! M1 = diag (sqrt (diag (A)));
%! M2 = M1;
%! Afcn = @(z, string) strcmp (string, "notransp") * (A * z) + ...
%! strcmp (string, "transp") * (A' * z);
%! M1_fcn = @(z, string) strcmp (string,"notransp") * (M1 \ z) + ...
%! strcmp (string, "transp") * (M1' \ z);
%! M2_fcn = @(z, string) strcmp (string, "notransp") * (M2 \ z) + ...
%! strcmp (string, "transp") * (M2' \ z);
%! [x, flag] = bicg (A, b);
%! assert (flag, 0);
%! [x, flag] = bicg (A, b, [], [], M1, M2);
%! assert (flag, 0);
%! [x, flag] = bicg (A, b, [], [], M1_fcn, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = bicg (A, b,[], [], M1_fcn, M2);
%! assert (flag, 0);
%! [x, flag] = bicg (A, b,[], [], M1, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = bicg (Afcn, b);
%! assert (flag, 0);
%! [x, flag] = bicg (Afcn, b,[], [], M1, M2);
%! assert (flag, 0);
%! [x, flag] = bicg (Afcn, b,[], [], M1_fcn, M2);
%! assert (flag, 0);
%! [x, flag] = bicg (Afcn, b,[], [], M1, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = bicg (Afcn, b,[], [], M1_fcn, M2_fcn);
%! assert (flag, 0);
%!test
%! n = 100;
%! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n);
%! b = sum (A, 2);
%! tol = 1e-8;
%! maxit = 15;
%! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n);
%! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n);
%! [x, flag, relres, iter, resvec] = bicg (A, b, tol, maxit, M1, M2);
%! assert (norm (b - A*x) / norm (b), 0, tol);
%!function y = afcn (x, t, a)
%! switch (t)
%! case "notransp"
%! y = a * x;
%! case "transp"
%! y = a' * x;
%! endswitch
%!endfunction
%!
%!test
%! n = 100;
%! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n);
%! b = sum (A, 2);
%! tol = 1e-8;
%! maxit = 15;
%! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n);
%! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n);
%!
%! [x, flag, relres, iter, resvec] = bicg (@(x, t) afcn (x, t, A),
%! b, tol, maxit, M1, M2);
%! assert (x, ones (size (b)), 1e-7);
%!test
%! n = 100;
%! tol = 1e-8;
%! a = sprand (n, n, .1);
%! A = a' * a + 100 * eye (n);
%! b = sum (A, 2);
%! [x, flag, relres, iter, resvec] = bicg (A, b, tol, [], diag (diag (A)));
%! assert (x, ones (size (b)), 1e-7);
%!test
%! ## Check that if the preconditioner is singular, the method doesn't work
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = ones (5,1);
%! M = ones (5);
%! [x, flag] = bicg (A, b, [], [], M);
%! assert (flag, 2);
%!test
%! ## If A singular, the algorithm doesn't work due to division by zero
%! A = ones (5);
%! b = [1:5]';
%! [x, flag] = bicg (A, b);
%! assert (flag, 4);
%!test
%! ## test for a complex linear system
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]) + ...
%! 1i * toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! [x, flag] = bicg (A, b);
%! assert (flag, 0);
%!test
%! A = single (1);
%! b = 1;
%! [x, flag] = bicg (A, b);
%! assert (class (x), "single");
%!test
%! A = 1;
%! b = single (1);
%! [x, flag] = bicg (A, b);
%! assert (class (x), "single");
%!test
%! A = single (1);
%! b = single (1);
%! [x, flag] = bicg (A, b);
%! assert (class (x), "single");
%!test
%!function y = Afcn (x, trans)
%! A = sparse (toeplitz ([2, 1, 0, 0], [2, -1, 0, 0]));
%! if (strcmp (trans, "notransp"))
%! y = A * x;
%! else
%! y = A' * x;
%! endif
%!endfunction
%!
%! [x, flag] = bicg ("Afcn", [1; 2; 2; 3]);
%! assert (x, ones (4, 1), 1e-6);
%!test
%! ## unpreconditioned residual
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = magic (5);
%! [x, flag, relres] = bicg (A, b, [], 2, M);
%! assert (norm (b - A * x) / norm (b), 0, relres + eps);
## Preconditioned technique
%!testif HAVE_UMFPACK
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! warning ("off", "Octave:lu:sparse_input", "local");
%! [M1, M2] = lu (A + eye (5));
%! [x, flag] = bicg (A, b, [], 1, M1, M2);
%! ## b has two columns!
%! [y, flag] = bicg (M1 \ A / M2, [M1 \ b, M2' \ b], [], 1);
%! assert (x, M2 \ y, 8 * eps);
%!test <*63860>
%! ## additional input argument
%! n = 10;
%! s = 1e-3;
%! tol = 1e-6;
%! a = ones (n, 1);
%! a = a / norm (a);
%! y = zeros (n, 1);
%! y(1:2:n) = 1;
%! Amat = @(x, type, s) x + (s * a) * (a' * x);
%! [x, flag] = bicg (Amat, y, tol, [], [], [], y, s);
%! assert (y, Amat (x, [], s), tol * norm (y));
|