1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
########################################################################
##
## Copyright (C) 2013-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{L} =} ichol (@var{A})
## @deftypefnx {} {@var{L} =} ichol (@var{A}, @var{opts})
##
## Compute the incomplete Cholesky factorization of the sparse square matrix
## @var{A}.
##
## By default, @code{ichol} uses only the lower triangle of @var{A} and
## produces a lower triangular factor @var{L} such that @tcode{L*L'}
## approximates @var{A}.
##
## The factor given by this routine may be useful as a preconditioner for a
## system of linear equations being solved by iterative methods such as
## PCG (Preconditioned Conjugate Gradient).
##
## The factorization may be modified by passing options in a structure
## @var{opts}. The option name is a field of the structure and the setting
## is the value of field. Names and specifiers are case sensitive.
##
## @table @asis
## @item type
## Type of factorization.
##
## @table @asis
## @item @qcode{"nofill"} (default)
## Incomplete Cholesky factorization with no fill-in (@nospell{IC(0)}).
##
## @item @qcode{"ict"}
## Incomplete Cholesky factorization with threshold dropping (@nospell{ICT}).
## @end table
##
## @item diagcomp
## A non-negative scalar @var{alpha} for incomplete Cholesky factorization of
## @code{@var{A} + @var{alpha} * diag (diag (@var{A}))} instead of @var{A}.
## This can be useful when @var{A} is not positive definite. The default value
## is 0.
##
## @item droptol
## A non-negative scalar specifying the drop tolerance for factorization if
## performing @nospell{ICT}@. The default value is 0 which produces the
## complete Cholesky factorization.
##
## Non-diagonal entries of @var{L} are set to 0 unless
##
## @code{abs (@var{L}(i,j)) >= droptol * norm (@var{A}(j:end, j), 1)}.
##
## @item michol
## Modified incomplete Cholesky factorization:
##
## @table @asis
## @item @qcode{"off"} (default)
## Row and column sums are not necessarily preserved.
##
## @item @qcode{"on"}
## The diagonal of @var{L} is modified so that row (and column) sums are
## preserved even when elements have been dropped during the factorization.
## The relationship preserved is: @code{@var{A} * e = @var{L} * @var{L}' * e},
## where e is a vector of ones.
## @end table
##
## @item shape
##
## @table @asis
## @item @qcode{"lower"} (default)
## Use only the lower triangle of @var{A} and return a lower triangular factor
## @var{L} such that @tcode{L*L'} approximates @var{A}.
##
## @item @qcode{"upper"}
## Use only the upper triangle of @var{A} and return an upper triangular factor
## @var{U} such that @code{U'*U} approximates @var{A}.
## @end table
## @end table
##
## EXAMPLES
##
## The following problem demonstrates how to factorize a sample symmetric
## positive definite matrix with the full Cholesky decomposition and with the
## incomplete one.
##
## @example
## @group
## A = [ 0.37, -0.05, -0.05, -0.07;
## -0.05, 0.116, 0.0, -0.05;
## -0.05, 0.0, 0.116, -0.05;
## -0.07, -0.05, -0.05, 0.202];
## A = sparse (A);
## nnz (tril (A))
## ans = 9
## L = chol (A, "lower");
## nnz (L)
## ans = 10
## norm (A - L * L', "fro") / norm (A, "fro")
## ans = 1.1993e-16
## opts.type = "nofill";
## L = ichol (A, opts);
## nnz (L)
## ans = 9
## norm (A - L * L', "fro") / norm (A, "fro")
## ans = 0.019736
## @end group
## @end example
##
## Another example for decomposition is a finite difference matrix used to
## solve a boundary value problem on the unit square.
##
## @example
## @group
## nx = 400; ny = 200;
## hx = 1 / (nx + 1); hy = 1 / (ny + 1);
## Dxx = spdiags ([ones(nx, 1), -2*ones(nx, 1), ones(nx, 1)],
## [-1 0 1 ], nx, nx) / (hx ^ 2);
## Dyy = spdiags ([ones(ny, 1), -2*ones(ny, 1), ones(ny, 1)],
## [-1 0 1 ], ny, ny) / (hy ^ 2);
## A = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
## nnz (tril (A))
## ans = 239400
## opts.type = "nofill";
## L = ichol (A, opts);
## nnz (tril (A))
## ans = 239400
## norm (A - L * L', "fro") / norm (A, "fro")
## ans = 0.062327
## @end group
## @end example
##
## References for implemented algorithms:
##
## [1] @nospell{Y. Saad}. "Preconditioning Techniques." @cite{Iterative
## Methods for Sparse Linear Systems}, @nospell{PWS} Publishing Company, 1996.
##
## [2] @nospell{M. Jones, P. Plassmann}: @cite{An Improved Incomplete
## Cholesky Factorization}, 1992.
## @seealso{chol, ilu, pcg}
## @end deftypefn
function L = ichol (A, opts = struct ())
if (nargin < 1)
print_usage ();
endif
if (! (issparse (A) && issquare (A)))
error ("ichol: A must be a sparse square matrix");
endif
if (! isstruct (opts))
error ("ichol: OPTS must be a structure");
endif
## If A is empty then return empty L for Matlab compatibility
if (isempty (A))
L = A;
return;
endif
## Parse input options
if (! isfield (opts, "type"))
opts.type = "nofill"; # set default
else
type = lower (getfield (opts, "type"));
if (! strcmp (type, "nofill") && ! strcmp (type, "ict"))
error ('ichol: TYPE must be "nofill" or "ict"');
endif
opts.type = type;
endif
if (! isfield (opts, "droptol"))
opts.droptol = 0; # set default
else
if (! (isreal (opts.droptol) && isscalar (opts.droptol)
&& opts.droptol >= 0))
error ("ichol: DROPTOL must be a non-negative real scalar");
endif
endif
michol = "";
if (! isfield (opts, "michol"))
opts.michol = "off"; # set default
else
michol = lower (getfield (opts, "michol"));
if (! strcmp (michol, "off") && ! strcmp (michol, "on"))
error ('ichol: MICHOL must be "on" or "off"');
endif
opts.michol = michol;
endif
if (! isfield (opts, "diagcomp"))
opts.diagcomp = 0; # set default
else
if (! (isreal (opts.diagcomp) && isscalar (opts.diagcomp)
&& opts.diagcomp >= 0))
error ("ichol: DIAGCOMP must be a non-negative real scalar");
endif
endif
if (! isfield (opts, "shape"))
opts.shape = "lower"; # set default
else
shape = lower (getfield (opts, "shape"));
if (! strcmp (shape, "lower") && ! strcmp (shape, "upper"))
error ('ichol: SHAPE must be "lower" or "upper"');
endif
opts.shape = shape;
endif
## Prepare input for specialized ICHOL
A_in = [];
if (opts.diagcomp > 0)
A += opts.diagcomp * diag (diag (A));
endif
if (strcmp (opts.shape, "upper"))
A_in = triu (A);
A_in = A_in';
else
A_in = tril (A);
endif
## Delegate to specialized ICHOL
switch (opts.type)
case "nofill"
L = __ichol0__ (A_in, opts.michol);
case "ict"
L = __icholt__ (A_in, opts.droptol, opts.michol);
endswitch
if (strcmp (opts.shape, "upper"))
L = L';
endif
endfunction
%!shared A1, A2, A3, A4, A5, A6, A7
%! A1 = [ 0.37, -0.05, -0.05, -0.07;
%! -0.05, 0.116, 0.0, -0.05;
%! -0.05, 0.0, 0.116, -0.05;
%! -0.07, -0.05, -0.05, 0.202];
%! A1 = sparse (A1);
%! A2 = gallery ("poisson", 30);
%! A3 = gallery ("tridiag", 50);
%! nx = 400; ny = 200;
%! hx = 1 / (nx + 1); hy = 1 / (ny + 1);
%! Dxx = spdiags ([ones(nx, 1), -2*ones(nx, 1), ones(nx, 1)],
%! [-1 0 1 ], nx, nx) / (hx ^ 2);
%! Dyy = spdiags ([ones(ny, 1), -2*ones(ny, 1), ones(ny, 1)],
%! [-1 0 1 ], ny, ny) / (hy ^ 2);
%! A4 = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
%! A5 = [ 0.37, -0.05, -0.05, -0.07;
%! -0.05, 0.116, 0.0, -0.05 + 0.05i;
%! -0.05, 0.0, 0.116, -0.05;
%! -0.07, -0.05 - 0.05i, -0.05, 0.202];
%! A5 = sparse (A5);
%! A6 = [ 0.37, -0.05 - i, -0.05, -0.07;
%! -0.05 + i, 0.116, 0.0, -0.05;
%! -0.05, 0.0, 0.116, -0.05;
%! -0.07, -0.05, -0.05, 0.202];
%! A6 = sparse (A6);
%! A7 = A5;
%! A7(1) = 2i;
## ICHOL0 tests
%!test
%! opts.type = "nofill";
%! opts.michol = "off";
%! assert (nnz (tril (A1)), nnz (ichol (A1, opts)));
%! assert (nnz (tril (A2)), nnz (ichol (A2, opts)));
%! assert (nnz (tril (A3)), nnz (ichol (A3, opts)));
%! assert (nnz (tril (A4)), nnz (ichol (A4, opts)));
%! assert (nnz (tril (A5)), nnz (ichol (A5, opts)));
%!
%!test
%! opts.type = "nofill";
%! opts.michol = "off";
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.0197, 1e-4);
%! opts.shape = "upper";
%! U = ichol (A1, opts);
%! assert (norm (A1 - U' * U, "fro") / norm (A1, "fro"), 0.0197, 1e-4);
%! opts.shape = "lower";
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.0197, 1e-4);
%!
%!test
%! opts.michol = "on";
%! opts.shape = "lower";
%! opts.type = "nofill";
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.0279, 1e-4);
%! opts.shape = "upper";
%! U = ichol (A1, opts);
%! assert (norm (A1 - U' * U, "fro") / norm (A1, "fro"), 0.0279, 1e-4);
%! opts.shape = "lower";
%! opts.diagcomp = 3e-3;
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.0272, 1e-4);
%!
%!test
%! opts.type = "nofill";
%! opts.michol = "off";
%! L = ichol (A2, opts);
%! assert (norm (A2 - L*L', "fro") / norm (A2, "fro"), 0.0893, 1e-4);
%! opts.michol = "on";
%! L = ichol (A2, opts);
%! assert (norm (A2 - L*L', "fro") / norm (A2, "fro"), 0.2377, 1e-4);
%!
%!test
%! opts.type = "nofill";
%! opts.michol = "off";
%! L = ichol (A3, opts);
%! assert (norm (A3 - L*L', "fro") / norm (A3, "fro"), eps, eps);
%! opts.michol = "on";
%! L = ichol (A3, opts);
%! assert (norm (A3 - L*L', "fro") / norm (A3, "fro"), eps, eps);
%!
%!test
%! opts.type = "nofill";
%! opts.michol = "off";
%! L = ichol (A4, opts);
%! assert (norm (A4 - L*L', "fro") / norm (A4, "fro"), 0.0623, 1e-4);
%! opts.michol = "on";
%! L = ichol (A4, opts);
%! assert (norm (A4 - L*L', "fro") / norm (A4, "fro"), 0.1664, 1e-4);
%!
%!test
%! opts.type = "nofill";
%! opts.michol = "off";
%! L = ichol (A5, opts);
%! assert (norm (A5 - L*L', "fro") / norm (A5, "fro"), 0.0195, 1e-4);
%! opts.michol = "on";
%! L = ichol (A5, opts);
%! assert (norm (A5 - L*L', "fro") / norm (A5, "fro"), 0.0276, 1e-4);
## Negative pivot
%!error <negative pivot> ichol (A6)
%!error ichol (A6)
## Complex entry in the diagonal
%!error <non-real pivot> ichol (A7)
## ICHOLT tests
%!#test
%! opts.type = "ict";
%! opts.droptol = 1e-1;
%! opts.michol = "off";
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.2065, 1e-4);
%! opts.shape = "upper";
%! U = ichol (A1, opts);
%! assert (norm (A1 - U' * U, "fro") / norm (A1, "fro"), 0.2065, 1e-4);
%! opts.shape = "lower";
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.2065, 1e-4);
%!#test
%! opts.type = "ict";
%! opts.droptol = 1e-1;
%! opts.michol = "on";
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.3266, 1e-4);
%! opts.shape = "upper";
%! U = ichol (A1, opts);
%! assert (norm (A1 - U' * U, "fro") / norm (A1, "fro"), 0.3266, 1e-4);
%! opts.shape = "lower";
%! opts.diagcomp = 3e-3;
%! L = ichol (A1, opts);
%! assert (norm (A1 - L * L', "fro") / norm (A1, "fro"), 0.3266, 1e-4);
%!test
%! opts.type = "ict";
%! opts.droptol = 1e-1;
%! opts.michol = "off";
%! L = ichol (A2, opts);
%! assert (norm (A2 - L*L', "fro") / norm (A2, "fro"), 0.0893, 1e-4);
%! opts.michol = "on";
%! L = ichol (A2, opts);
%! assert (norm (A2 - L*L', "fro") / norm (A2, "fro"), 0.2377, 1e-4);
%!test
%! opts.type = "ict";
%! opts.droptol = 1e-1;
%! opts.michol = "off";
%! L = ichol (A3, opts);
%! assert (norm (A3 - L*L', "fro") / norm (A3, "fro"), eps, eps);
%! opts.michol = "on";
%! L = ichol (A3, opts);
%! assert (norm (A3 - L*L', "fro") / norm (A3, "fro"), eps, eps);
%!test
%! opts.type = "ict";
%! opts.droptol = 1e-1;
%! opts.michol = "off";
%! L = ichol (A4, opts);
%! assert (norm (A4 - L*L', "fro") / norm (A4, "fro"), 0.1224, 1e-4);
%! opts.michol = "on";
%! L = ichol (A4, opts);
%! assert (norm (A4 - L*L', "fro") / norm (A4, "fro"), 0.2118, 1e-4);
%!test
%! opts.type = "ict";
%! opts.droptol = 1e-1;
%! opts.michol = "off";
%! L = ichol (A5, opts);
%! assert (norm (A5 - L*L', "fro") / norm (A5, "fro"), 0.2044, 1e-4);
%! opts.michol = "on";
%! L = ichol (A5, opts);
%! assert (norm (A5 - L*L', "fro") / norm (A5, "fro"), 0.3231, 1e-4);
## Test input validation
%!error <A must be a sparse square matrix> ichol ([])
%!error <A must be a sparse square matrix> ichol (0)
%!error <pivot equal to 0> ichol (sparse (0))
%!error <pivot equal to 0> ichol (sparse (-0))
%!error <negative pivot> ichol (sparse (-1))
%!test
%! opts.type = "foo";
%! fail ("ichol (A1, opts)", 'TYPE must be "nofill"');
%! opts.type = 1;
%! fail ("ichol (A1, opts)", 'TYPE must be "nofill"');
%! opts.type = [];
%! fail ("ichol (A1, opts)", 'TYPE must be "nofill"');
%!test
%! opts.droptol = -1;
%! fail ("ichol (A1, opts)", "DROPTOL must be a non-negative real scalar");
%! opts.droptol = 0.5i;
%! fail ("ichol (A1, opts)", "DROPTOL must be a non-negative real scalar");
%! opts.droptol = [];
%! fail ("ichol (A1, opts)", "DROPTOL must be a non-negative real scalar");
%!test
%! opts.michol = "foo";
%! fail ("ichol (A1, opts)", 'MICHOL must be "on"');
%! opts.michol = 1;
%! fail ("ichol (A1, opts)", 'MICHOL must be "on"');
%! opts.michol = [];
%! fail ("ichol (A1, opts)", 'MICHOL must be "on"');
%!test
%! opts.diagcomp = -1;
%! fail ("ichol (A1, opts)", "DIAGCOMP must be a non-negative real scalar");
%! opts.diagcomp = 0.5i;
%! fail ("ichol (A1, opts)", "DIAGCOMP must be a non-negative real scalar");
%! opts.diagcomp = [];
%! fail ("ichol (A1, opts)", "DIAGCOMP must be a non-negative real scalar");
%!test
%! opts.shape = "foo";
%! fail ("ichol (A1, opts)", 'SHAPE must be "lower"');
%! opts.shape = 1;
%! fail ("ichol (A1, opts)", 'SHAPE must be "lower"');
%! opts.shape = [];
%! fail ("ichol (A1, opts)", 'SHAPE must be "lower"');
|