File: ilu.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (585 lines) | stat: -rw-r--r-- 18,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
########################################################################
##
## Copyright (C) 2013-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{LUA} =} ilu (@var{A})
## @deftypefnx {} {@var{LUA} =} ilu (@var{A}, @var{opts})
## @deftypefnx {} {[@var{L}, @var{U}] =} ilu (@dots{})
## @deftypefnx {} {[@var{L}, @var{U}, @var{P}] =} ilu (@dots{})
##
## Compute the incomplete LU factorization of the sparse square matrix @var{A}.
##
## @code{ilu} returns a unit lower triangular matrix @var{L}, an upper
## triangular matrix @var{U}, and optionally a permutation matrix @var{P}, such
## that @code{@var{L}*@var{U}} approximates @code{@var{P}*@var{A}}.
##
## The factors given by this routine may be useful as preconditioners for a
## system of linear equations being solved by iterative methods such as BICG
## (BiConjugate Gradients) or GMRES (Generalized Minimum Residual Method).
##
## The factorization may be modified by passing options in a structure
## @var{opts}.  The option name is a field of the structure and the setting
## is the value of field.  Names and specifiers are case sensitive.
##
## @table @code
## @item type
## Type of factorization.
##
## @table @asis
## @item @qcode{"nofill"} (default)
## ILU factorization with no fill-in (ILU(0)).
##
## Additional supported options: @code{milu}.
##
## @item @qcode{"crout"}
## Crout version of ILU factorization (@nospell{ILUC}).
##
## Additional supported options: @code{milu}, @code{droptol}.
##
## @item @qcode{"ilutp"}
## ILU factorization with threshold and pivoting.
##
## Additional supported options: @code{milu}, @code{droptol}, @code{udiag},
## @code{thresh}.
## @end table
##
## @item droptol
## A non-negative scalar specifying the drop tolerance for factorization.  The
## default value is 0 which produces the complete LU factorization.
##
## Non-diagonal entries of @var{U} are set to 0 unless
##
## @code{abs (@var{U}(i,j)) >= droptol * norm (@var{A}(:,j))}.
##
## Non-diagonal entries of @var{L} are set to 0 unless
##
## @code{abs (@var{L}(i,j)) >= droptol * norm (@var{A}(:,j))/@var{U}(j,j)}.
##
## @item milu
## Modified incomplete LU factorization:
##
## @table @asis
## @item @qcode{"row"}
## Row-sum modified incomplete LU factorization.
## The factorization preserves row sums:
## @code{@var{A} * e = @var{L} * @var{U} * e}, where e is a vector of ones.
##
## @item @qcode{"col"}
## Column-sum modified incomplete LU factorization.
## The factorization preserves column sums:
## @code{e' * @var{A} = e' * @var{L} * @var{U}}.
##
## @item @qcode{"off"} (default)
## Row and column sums are not necessarily preserved.
## @end table
##
## @item udiag
## If true, any zeros on the diagonal of the upper triangular factor are
## replaced by the local drop tolerance
## @code{droptol * norm (@var{A}(:,j))/@var{U}(j,j)}.  The default is false.
##
## @item thresh
## Pivot threshold for factorization.  It can range between 0 (diagonal
## pivoting) and 1 (default), where the maximum magnitude entry in the column
## is chosen to be the pivot.
## @end table
##
## If @code{ilu} is called with just one output, the returned matrix is
## @code{@var{L} + @var{U} - speye (size (@var{A}))}, where @var{L} is unit
## lower triangular and @var{U} is upper triangular.
##
## With two outputs, @code{ilu} returns a unit lower triangular matrix @var{L}
## and an upper triangular matrix @var{U}.  For @var{opts}.type ==
## @qcode{"ilutp"}, one of the factors is permuted based on the value of
## @var{opts}.milu.  When @var{opts}.milu == @qcode{"row"}, @var{U} is a
## column permuted upper triangular factor.  Otherwise, @var{L} is a
## row-permuted unit lower triangular factor.
##
## If there are three named outputs and @var{opts}.milu != @qcode{"row"},
## @var{P} is returned such that @var{L} and @var{U} are incomplete factors
## of @code{@var{P}*@var{A}}.  When @var{opts}.milu == @qcode{"row"}, @var{P}
## is returned such that @var{L} and @var{U} are incomplete factors of
## @code{@var{A}*@var{P}}.
##
## EXAMPLES
##
## @example
## @group
## A = gallery ("neumann", 1600) + speye (1600);
## opts.type = "nofill";
## nnz (A)
## ans = 7840
##
## nnz (lu (A))
## ans = 126478
##
## nnz (ilu (A, opts))
## ans = 7840
## @end group
## @end example
##
## This shows that @var{A} has 7,840 nonzeros, the complete LU factorization
## has 126,478 nonzeros, and the incomplete LU factorization, with 0 level of
## fill-in, has 7,840 nonzeros, the same amount as @var{A}.  Taken from:
## @url{https://www.mathworks.com/help/matlab/ref/ilu.html}
##
## @example
## @group
## A = gallery ("wathen", 10, 10);
## b = sum (A, 2);
## tol = 1e-8;
## maxit = 50;
## opts.type = "crout";
## opts.droptol = 1e-4;
## [L, U] = ilu (A, opts);
## x = bicg (A, b, tol, maxit, L, U);
## norm (A * x - b, inf)
## @end group
## @end example
##
## This example uses ILU as preconditioner for a random FEM-Matrix, which has a
## large condition number.  Without @var{L} and @var{U} BICG would not
## converge.
##
## @seealso{lu, ichol, bicg, gmres}
## @end deftypefn

function [L, U, P] = ilu (A, opts = struct ())

  if (nargin < 1)
    print_usage ();
  endif

  if (! (issparse (A) && issquare (A)))
    error ("ilu: A must be a sparse square matrix");
  endif

  if (! isstruct (opts))
    error ("ilu: OPTS must be a structure");
  endif

  ## If A is empty then return empty L, U and P for Matlab compatibility
  if (isempty (A))
    L = U = P = A;
    return;
  endif

  ## Parse input options
  if (! isfield (opts, "type"))
    opts.type = "nofill";  # set default
  else
    type = lower (getfield (opts, "type"));
    if (! any (strcmp (type, {"nofill", "crout", "ilutp"})))
      error ("ilu: invalid TYPE specified");
    endif
    opts.type = type;
  endif

  if (! isfield (opts, "droptol"))
    opts.droptol = 0;      # set default
  else
    if (! (isreal (opts.droptol) && isscalar (opts.droptol)
           && opts.droptol >= 0))
      error ("ilu: DROPTOL must be a non-negative real scalar");
    endif
  endif

  if (! isfield (opts, "milu"))
    opts.milu = "off";     # set default
  else
    milu = lower (getfield (opts, "milu"));
    if (! any (strcmp (milu, {"off", "col", "row"})))
      error ('ilu: MILU must be one of "off", "col", or "row"');
    endif
    opts.milu = milu;
  endif

  if (! isfield (opts, "udiag"))
    opts.udiag = 0;        # set default
  else
    if (! isscalar (opts.udiag) || (opts.udiag != 0 && opts.udiag != 1))
      error ("ilu: UDIAG must be 0 or 1");
    endif
  endif

  if (! isfield (opts, "thresh"))
    opts.thresh = 1;       # set default
  else
    if (! (isreal (opts.thresh) && isscalar (opts.thresh))
        || opts.thresh < 0 || opts.thresh > 1)
      error ("ilu: THRESH must be a scalar in the range [0, 1]");
    endif
  endif

  n = length (A);

  ## Delegate to specialized ILU
  switch (opts.type)
    case "nofill"
        [L, U] = __ilu0__ (A, opts.milu);
        if (nargout == 3)
          P = speye (length (A));
        endif
    case "crout"
        [L, U] = __iluc__ (A, opts.droptol, opts.milu);
        if (nargout == 3)
          P = speye (length (A));
        endif
    case "ilutp"
        if (nargout == 3)
          [L, U, P] = __ilutp__ (A, opts.droptol, opts.thresh,
                                    opts.milu, opts.udiag);
        else
          [L, U] = __ilutp__ (A, opts.droptol, opts.thresh,
                                 opts.milu, opts.udiag);
        endif
  endswitch

  if (nargout == 1)
    L = L + U - speye (n);
  endif

endfunction


%!shared n, dtol, A
%! n = 1600;
%! dtol = 0.1;
%! A = gallery ("neumann", n) + speye (n);

%!test
%! opts.type = "nofill";
%! assert (nnz (ilu (A, opts)), 7840);

## This test has been verified in both Matlab and Octave.
%!test
%! opts.type = "crout";
%! opts.milu = "row";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! e = ones (columns (A),1);
%! assert (norm (A*e - L*U*e), 1e-14, 1e-14);
%!test
%! opts.type = "crout";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! assert (norm (A - L * U, "fro") / norm (A, "fro"), 0.05, 1e-2);

## Check if the elements in U satisfy the non-dropping condition.
%!test
%! opts.type = "crout";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! for j = 1:n
%!   cmp_value = dtol * norm (A(:, j));
%!   non_zeros = nonzeros (U(:, j));
%!   assert (abs (non_zeros) >= cmp_value);
%! endfor
%!test
%! opts.type = "ilutp";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! for j = 1:n
%!   cmp_value = dtol * norm (A(:, j));
%!   non_zeros = nonzeros (U(:, j));
%!   assert (abs (non_zeros) >= cmp_value);
%! endfor

## Check that the complete LU factorisation with crout and ilutp algorithms
## produce the same result.
%!test
%! opts.type = "crout";
%! opts.droptol = 0;
%! [L1, U1] = ilu (A, opts);
%! opts.type = "ilutp";
%! opts.thresh = 0;
%! [L2, U2] = ilu (A, opts);
%! assert (norm (L1 - L2, "fro") / norm (L1, "fro"), 0, eps);
%! assert (norm (U1 - U2, "fro") / norm (U1, "fro"), 0, eps);

## Restore rand "state" value
%!shared old_rand_state, restore_state
%! ## Save and restore the state of the random number generator that is used by
%! ## the unit tests in this file.
%! old_rand_state = rand ("state");
%! restore_state = onCleanup (@() rand ("state", old_rand_state));

## Tests for real matrices of different sizes for ilu0, iluc and ilutp.
## The difference A - L*U should be not greater than eps because with droptol
## equal to 0, the LU complete factorization is performed.
%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
%! n_tiny = 5;
%! n_small = 40;
%! n_medium = 600;
%! n_large = 10000;
%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
%! ## initialize generator to make behavior reproducible
%! rand ("state", 42);
%! A_small = sprand (n_small, n_small, 1/n_small) + speye (n_small);
%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
%! A_large = sprand (n_large, n_large, 1/n_large/10) + speye (n_large);

%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_tiny);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), 0, n_tiny * eps);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_small);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_medium);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_large);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), 0, 1);

%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

## Tests for complex matrices of different sizes for ilu0, iluc and ilutp.
%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
%! n_tiny = 5;
%! n_small = 40;
%! n_medium = 600;
%! n_large = 10000;
%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
%! A_tiny(1,1) += 1i;
%! ## initialize generator to make behavior reproducible
%! rand ("state", 42);
%! A_small = sprand (n_small, n_small, 1/n_small) + ...
%!   i * sprand (n_small, n_small, 1/n_small) + speye (n_small);
%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + ...
%!   i * sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
%! A_large = sprand (n_large, n_large, 1/n_large/10) + ...
%!   i * sprand (n_large, n_large, 1/n_large/10) + speye (n_large);

%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_tiny);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), 0, n_tiny * eps);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_small);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_medium);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_large);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), 0, 1);

%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

## Specific tests for ilutp
%!shared A
%! A = sparse ([0 0 4 3 1; 5 1 2.3 2 4.5; 0 0 0 2 1;0 0 8 0 2.2; 0 0 9 9 1 ]);

%!test
%! opts.udiag = 1;
%! opts.type = "ilutp";
%! opts.droptol = 0.2;
%! [L, U, P] = ilu (A, opts);
%! assert (norm (U, "fro"), 17.4577, 1e-4);
%! assert (norm (L, "fro"), 2.4192, 1e-4);

%!error <encountered a pivot equal to 0>
%! opts.type = "ilutp";
%! opts.udiag = 0;
%! opts.droptol = 0.2;
%! ilu (A, opts);

## Matlab R2017b doesn't error, but returns a singular L which isn't helpful.
%!error <encountered a pivot equal to 0>
%! A = sparse ([3 1 0 0 4; 3 1 0 0 -2;0 0 8 0 0; 0 4 0 4 -4.5; 0 -1 0 0 1]);
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! opts.milu = "row";
%! [L, U, P] = ilu (A, opts);

%!test <*53440>
%! A = sparse (magic (4));
%! opts.type = "ilutp";
%! [L, U] = ilu (A, opts);
%! assert (L * U, A, eps);

## Tests for input validation
%!shared A_tiny, opts
%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');

%!test
%! [L, U] = ilu (sparse ([]));
%! assert (isempty (L));
%! assert (isempty (U));
%! opts.type = "crout";
%! [L, U] = ilu (sparse ([]), opts);
%! assert (isempty (L));
%! assert (isempty (U));
%! opts.type = "ilutp";
%! [L, U] = ilu (sparse ([]), opts);
%! assert (isempty (L));
%! assert (isempty (U));

%!error <A must be a sparse square matrix> ilu (0)
%!error <A must be a sparse square matrix> ilu ([])
%!error <zero on the diagonal> ilu (sparse (0))

%!error <invalid TYPE specified>
%! opts.type = "foo";
%! ilu (A_tiny, opts);
%!error <invalid TYPE specified>
%! opts.type = 1;
%! ilu (A_tiny, opts);
%!error <invalid TYPE specified>
%! opts.type = [];
%! ilu (A_tiny, opts);

%!error <DROPTOL must be a non-negative real scalar>
%! clear opts;
%! opts.droptol = -1;
%! ilu (A_tiny, opts);
%!error <DROPTOL must be a non-negative real scalar>
%! opts.droptol = 0.5i;
%! ilu (A_tiny, opts);
%!error <DROPTOL must be a non-negative real scalar>
%! opts.droptol = [];
%! ilu (A_tiny, opts);

%!error <MILU must be one of "off", "col", or "row">
%! clear opts;
%! opts.milu = "foo";
%! ilu (A_tiny, opts);
%!error <MILU must be one of "off", "col", or "row">
%! opts.milu = 1;
%! ilu (A_tiny, opts);
%!error <MILU must be one of "off", "col", or "row">
%! opts.milu = [];
%! ilu (A_tiny, opts);

%!error <UDIAG must be 0 or 1>
%! clear opts;
%! opts.udiag = -1;
%! ilu (A_tiny, opts);
%!error <UDIAG must be 0 or 1>
%! opts.udiag = 0.5i;
%! ilu (A_tiny, opts);
%!error <UDIAG must be 0 or 1>
%! opts.udiag = [];
%! ilu (A_tiny, opts);

%!error <THRESH must be a scalar in the range \[0, 1\]>
%! clear opts;
%! opts.thresh = -1;
%! ilu (A_tiny, opts);
%!error <THRESH must be a scalar in the range \[0, 1\]>
%! opts.thresh = 0.5i;
%! ilu (A_tiny, opts);
%!error <THRESH must be a scalar in the range \[0, 1\]>
%! opts.thresh = [];
%! ilu (A_tiny, opts);