1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
########################################################################
##
## Copyright (C) 2004-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{})
## @deftypefnx {} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@var{A}, @var{b}, @dots{})
##
## Solve the linear system of equations
## @w{@code{@var{A} * @var{x} = @var{b}}}@ by means of the Preconditioned
## Conjugate Gradient iterative method.
##
## The input arguments are:
##
## @itemize
## @item @var{A} is the matrix of the linear system and it must be square.
## @var{A} can be passed as a matrix, function handle, or inline function
## @code{Afcn} such that @code{Afcn(x) = A * x}. Additional parameters to
## @code{Afcn} may be passed after @var{x0}.
##
## @var{A} has to be Hermitian and Positive Definite (@nospell{HPD})@. If
## @code{pcg} detects @var{A} not to be positive definite, a warning is printed
## and the @var{flag} output is set.
##
## @item
## @var{b} is the right-hand side vector.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @w{@code{@var{b} - @var{A} * @var{x}}}. The iteration stops if
## @w{@code{norm (@var{b} - @var{A} * @var{x})} @leq{}
## @w{@code{@var{tol} * norm (@var{b})}}}.
## If @var{tol} is omitted or empty, then a tolerance of 1e-6 is used.
##
## @item
## @var{maxit} is the maximum allowed number of iterations; if @var{maxit}
## is omitted or empty then a value of 20 is used.
##
## @item
## @var{m} is a @nospell{HPD} preconditioning matrix. For any decomposition
## @code{@var{m} = @var{p1} * @var{p2}} such that
## @w{@code{inv (@var{p1}) * @var{A} * inv (@var{p2})}}@ is @nospell{HPD}, the
## conjugate gradient method is formally applied to the linear system
## @w{@code{inv (@var{p1}) * @var{A} * inv (@var{p2}) * @var{y} = inv
## (@var{p1}) * @var{b}}},
## with @code{@var{x} = inv (@var{p2}) * @var{y}} (split preconditioning).
## In practice, at each iteration of the conjugate gradient method a
## linear system with matrix @var{m} is solved with @code{mldivide}.
## If a particular factorization
## @code{@var{m} = @var{m1} * @var{m2}} is available (for instance, an
## incomplete Cholesky factorization of @var{a}), the two matrices
## @var{m1} and @var{m2} can be passed and the relative linear systems
## are solved with the @code{mldivide} operator.
## Note that a proper choice of the preconditioner may dramatically improve
## the overall performance of the method. Instead of matrices @var{m1} and
## @var{m2}, the user may pass two functions which return the results of
## applying the inverse of @var{m1} and @var{m2} to a vector.
## If @var{m1} is omitted or empty @code{[]}, then no preconditioning
## is applied. If no factorization of @var{m} is available, @var{m2}
## can be omitted or left [], and the input variable @var{m1} can be
## used to pass the preconditioner @var{m}.
##
## @item
## @var{x0} is the initial guess. If @var{x0} is omitted or empty then the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed in
## an appropriate manner to any of the functions (@var{A} or @var{m1} or
## @var{m2}) that have been given to @code{pcg}.
## See the examples below for further details.
##
## The output arguments are:
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @w{@code{@var{A} * @var{x} = @var{b}}}. If the algorithm did not converge,
## then @var{x} is the iteration which has the minimum residual.
##
## @item
## @var{flag} reports on the convergence:
##
## @itemize
## @item 0: The algorithm converged to within the prescribed tolerance.
##
## @item 1: The algorithm did not converge and it reached the maximum
## number of iterations.
##
## @item 2: The preconditioner matrix is singular.
##
## @item 3: The algorithm stagnated, i.e., the absolute value of the
## difference between the current iteration @var{x} and the previous is less
## than @code{@var{eps} * norm (@var{x},2)}.
##
## @item 4: The algorithm detects that the input (preconditioned) matrix is not
## @nospell{HPD}.
## @end itemize
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} indicates the iteration of @var{x} which it was
## computed. Since the output @var{x} corresponds to the minimal
## residual solution, the total number of iterations that
## the method performed is given by @code{length(resvec) - 1}.
##
## @item
## @var{resvec} describes the convergence history of the method.
## @code{@var{resvec} (@var{i}, 1)} is the Euclidean norm of the residual, and
## @code{@var{resvec} (@var{i}, 2)} is the preconditioned residual
## norm, after the
## (@var{i}-1)-th iteration, @code{@var{i} = 1, 2, @dots{}, @var{iter}+1}.
## The preconditioned residual norm is defined as
## @code{@var{r}' * (@var{m} \ @var{r})} where
## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
## description of @var{m}. If @var{eigest} is not required, only
## @code{@var{resvec} (:, 1)} is returned.
##
## @item
## @var{eigest} returns the estimate for the smallest @code{@var{eigest}(1)}
## and largest @code{@var{eigest}(2)} eigenvalues of the preconditioned matrix
## @w{@code{@var{P} = @var{m} \ @var{A}}}. In particular, if no
## preconditioning is used, the estimates for the extreme eigenvalues of
## @var{A} are returned. @code{@var{eigest}(1)} is an overestimate and
## @code{@var{eigest}(2)} is an underestimate, so that
## @code{@var{eigest}(2) / @var{eigest}(1)} is a lower bound for
## @code{cond (@var{P}, 2)}, which nevertheless in the limit should
## theoretically be equal to the actual value of the condition number.
## @end itemize
##
##
## Let us consider a trivial problem with a tridiagonal matrix
##
## @example
## @group
## n = 10;
## A = toeplitz (sparse ([1, 1], [1, 2], [2, 1], 1, n));
## b = A * ones (n, 1);
## M1 = ichol (A); # in this tridiagonal case it corresponds to chol (A)'
## M2 = M1';
## M = M1 * M2;
## Afcn = @@(x) A * x;
## Mfcn = @@(x) M \ x;
## M1fcn = @@(x) M1 \ x;
## M2fcn = @@(x) M2 \ x;
## @end group
## @end example
##
## @sc{Example 1:} Simplest use of @code{pcg}
##
## @example
## x = pcg (A, b)
## @end example
##
## @sc{Example 2:} @code{pcg} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## x = pcg (Afcn, b)
## @end example
##
## @sc{Example 3:} @code{pcg} with a preconditioner matrix @var{M}
##
## @example
## x = pcg (A, b, 1e-06, 100, M)
## @end example
##
## @sc{Example 4:} @code{pcg} with a function as preconditioner
##
## @example
## x = pcg (Afcn, b, 1e-6, 100, Mfcn)
## @end example
##
## @sc{Example 5:} @code{pcg} with preconditioner matrices @var{M1}
## and @var{M2}
##
## @example
## x = pcg (A, b, 1e-6, 100, M1, M2)
## @end example
##
## @sc{Example 6:} @code{pcg} with functions as preconditioners
##
## @example
## x = pcg (Afcn, b, 1e-6, 100, M1fcn, M2fcn)
## @end example
##
## @sc{Example 7:} @code{pcg} with as input a function requiring an argument
##
## @example
## @group
## function y = Ap (A, x, p) # compute A^p * x
## y = x;
## for i = 1:p
## y = A * y;
## endfor
## endfunction
## Apfcn = @@(x, p) Ap (A, x, p);
## x = pcg (Apfcn, b, [], [], [], [], [], 2);
## @end group
## @end example
##
## @sc{Example 8:} explicit example to show that @code{pcg} uses a
## split preconditioner
##
## @example
## @group
## M1 = ichol (A + 0.1 * eye (n)); # factorization of A perturbed
## M2 = M1';
## M = M1 * M2;
##
## ## reference solution computed by pcg after two iterations
## [x_ref, fl] = pcg (A, b, [], 2, M)
##
## ## split preconditioning
## [y, fl] = pcg ((M1 \ A) / M2, M1 \ b, [], 2)
## x = M2 \ y # compare x and x_ref
##
## @end group
## @end example
##
## References:
##
## @enumerate
## @item
## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations},
## SIAM, 1995. (the base PCG algorithm)
##
## @item
## @nospell{Y. Saad}, @cite{Iterative Methods for Sparse Linear Systems},
## @nospell{PWS} 1996. (condition number estimate from PCG)
## Revised version of this book is available online at
## @url{https://www-users.cs.umn.edu/~saad/books.html}
## @end enumerate
##
## @seealso{sparse, pcr, gmres, bicg, bicgstab, cgs}
## @end deftypefn
function [x_min, flag, relres, iter_min, resvec, eigest] =...
pcg (A, b, tol = [], maxit = [], M1 = [], M2 = [], x0 = [], varargin)
## Insert the default input (if necessary)
[tol, maxit, x0] = __default__input__ ({1e-6, min(rows (b), 20),...
zeros(size (b))}, tol, maxit, x0);
if (tol >= 1)
warning ("Input tol is bigger than 1. \n Try to use a smaller tolerance.");
elseif (tol <= eps / 2)
warning ("Input tol may not be achievable by pcg. \n Try to use a bigger tolerance");
endif
## Check if the input data A,b,m1,m2 are consistent (i.e. if they are
## matrix or function handle)
[Afcn, M1fcn, M2fcn] = __alltohandles__ (A, b, M1, M2, "pcg");
maxit += 2;
n_arg_out = nargout;
## Set Initial data
b_norm = norm (b);
if (b_norm == 0)
if (n_arg_out < 2)
printf ("The right hand side vector is all zero so pcg \n");
printf ("returned an all zero solution without iterating.\n");
endif
x_min = b;
flag = 0;
relres = 0;
resvec = 0;
iter_min = 0;
eigest = [NaN, NaN];
return;
endif
x = x_pr = x_min = x0;
## x_pr (x previous) needs to check the stagnation
## x_min needs to save the iterated with minimum residual
r = b - feval (Afcn, x, varargin{:});
iter = 2;
iter_min = 0;
flag = 1;
resvec = zeros (maxit + 1, 2);
resvec(1, 1) = norm (r);
p = zeros (size (b));
alpha = old_tau = 1;
if (n_arg_out > 5)
T = zeros (maxit, maxit);
else
T = [];
endif
while (resvec(iter-1,1) > tol * b_norm && iter < maxit)
if (iter == 2) # Check whether M1 or M2 are singular
try
warning ("error","Octave:singular-matrix","local");
z = feval (M1fcn, r, varargin{:});
z = feval (M2fcn, z, varargin{:});
catch
flag = 2;
break;
end_try_catch
else
z = feval (M1fcn, r, varargin{:});
z = feval (M2fcn, z, varargin{:});
endif
tau = z' * r;
resvec(iter - 1, 2) = sqrt (tau);
beta = tau / old_tau;
old_tau = tau;
p = z + beta * p;
w = feval (Afcn, p, varargin{:});
## Needed only for eigest.
old_alpha = alpha;
den = p' * w;
alpha = tau / den;
## Check if alpha is negative and/or if it has a consistent
## imaginary part: if yes then A probably is not positive definite
if ((abs (imag (tau)) >= abs (real (tau)) * tol) || ...
real (tau) <= 0 || ...
(abs (imag (den)) >= abs (real (den)) * tol) || ...
(real (den) <= 0))
flag = 4;
break;
endif
x += alpha * p;
r -= alpha * w;
resvec(iter, 1) = norm (r);
## Check if the iterated has minimum residual
if (resvec (iter,1) <= resvec (iter_min + 1,1))
x_min = x;
iter_min = iter - 1;
endif
if (n_arg_out > 5 && iter > 2)
T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
[1, sqrt(beta); sqrt(beta), beta] ./ ...
old_alpha;
endif
iter += 1;
if (norm (x - x_pr) <= eps * norm (x)) # Check the stagnation
flag = 3;
break;
endif
x_pr = x;
endwhile
if (n_arg_out > 5)
## Apply the preconditioner once more and finish with the precond
## residual.
z = feval (M1fcn, r, varargin{:});
z = feval (M2fcn, z, varargin{:});
endif
## (Eventually) computes the eigenvalue of inv(m2)*inv(m1)*A
if (n_arg_out > 5)
if (flag != 4)
if (iter > 3)
T = T(2:iter-2,2:iter-2);
l = eig (T);
eigest = [min(l), max(l)];
else
eigest = [NaN, NaN];
warning ("pcg: eigenvalue estimate failed: iteration converged too fast");
endif
else
eigest = [NaN, NaN];
warning ('pcg: eigenvalue estimate failed: matrix not positive definite?');
endif
resvec(iter - 1, 2) = sqrt (r' * z);
resvec = resvec (1:(iter-1), :);
else
eigest = [NaN, NaN];
resvec = resvec(1:(iter-1),1);
endif
## Set the last variables
if (flag == 2)
relres = 1;
elseif (resvec (1, 1) == 0)
relres = 0;
else
relres = resvec(iter_min+1, 1) ./ b_norm;
endif
iter -= 2; # compatibility
## Set the flag in the proper way if flag not 3, 4 or 2
if (flag == 2)
flag = 2;
elseif (flag == 1) && (relres <= tol)
flag = 0;
endif
if (n_arg_out < 2)
switch (flag)
case {0}
printf ("pcg converged at iteration %d ", iter_min);
printf ("with relative residual %d\n", relres);
case {1}
printf ("pcg stopped at iteration %d ", iter+1);
printf ("without converging to the desired tolerance %d ", tol);
printf ("because the maximum number of iteration was reached, \n");
printf ("The iterated returned (number %d) ",iter_min);
printf ("has relative residual %d \n", relres);
case {2}
printf ("pcg stopped at iteration %d ", iter+1)
printf ("without converging to the desired tolerance %d ", tol);
printf ("because the preconditioned matrix is singular.\n");
printf ("The iterated returned (number %d) ", iter_min);
printf ("has relative residual %d \n", relres);
case {3}
printf ("pcg stopped at iteration %d ", iter+1);
printf ("without converging to the desired tolerance %d ", tol);
printf ("because of stagnation. \n");
printf ("The iterated returned (number %d) ", iter_min);
printf ("has relative residual %d.\n", relres);
case {4}
printf ("pcg stopped at iteration %d ", iter + 1);
printf ("without converging to the desired tolerance %d ",tol);
printf ("because the (preconditioned) matrix is not positive definite. \n");
printf ("The iterate returned (number %d) ", iter_min);
printf ("has relative residual %d \n", relres);
endswitch
endif
endfunction
%!demo # simplest use
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1], 1, n));
%! b = A * ones (n, 1);
%! M1 = ichol (A); # for this tridiagonal case it corresponds to chol (A)'
%! M2 = M1';
%! M = M1 * M2;
%! x = pcg (A, b);
%! Afcn = @(x) A * x;
%! x = pcg (Afcn, b);
%! x = pcg (A, b, 1e-6, 100, M);
%! x = pcg (A, b, 1e-6, 100, M1, M2);
%! Mfcn = @(x) M \ x;
%! x = pcg (Afcn, b, 1e-6, 100, Mfcn);
%! M1fcn = @(x) M1 \ x;
%! M2fcn = @(x) M2 \ x;
%! x = pcg (Afcn, b, 1e-6, 100, M1fcn, M2fcn);
%! function y = Ap (A, x, p) # compute A^p * x
%! y = x;
%! for i = 1:p
%! y = A * y;
%! endfor
%! endfunction
%! Afcn = @(x, p) Ap (A, x, p);
%! ## solution of A^2 * x = b
%! x = pcg (Afcn, b, [], [], [], [], [], 2);
%!demo
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1], 1, n));
%! b = A * ones (n, 1);
%! M1 = ichol (A + 0.1 * eye (n)); # Perturb the factorization of A
%! M2 = M1';
%! M = M1 * M2;
%!
%! ## Reference solution computed by pcg after two iterations
%! [x_ref, fl] = pcg (A, b, [], 2, M);
%! x_ref
%!
%! ## Split preconditioning
%! [y, fl] = pcg ((M1 \ A) / M2, M1 \ b, [], 2);
%! x = M2 \ y # compare x and x_ref
%!test
%! ## Check that all type of inputs work
%! A = toeplitz (sparse ([2, 1 ,0, 0, 0]));
%! b = A * ones (5, 1);
%! M1 = diag (sqrt (diag (A)));
%! M2 = M1; # M1 * M2 is the Jacobi preconditioner
%! Afcn = @(z) A*z;
%! M1_fcn = @(z) M1 \ z;
%! M2_fcn = @(z) M2 \ z;
%! [x, flag, ~, iter] = pcg (A,b);
%! assert (flag, 0);
%! [x, flag, ~ , iter] = pcg (A, b, [], [], M1 * M2);
%! assert (flag, 0);
%! [x, flag, ~ , iter] = pcg (A, b, [], [], M1, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (A, b, [], [], M1_fcn, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = pcg (A, b,[],[], M1_fcn, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (A, b,[],[], M1, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = pcg (Afcn, b);
%! assert (flag, 0);
%! [x, flag] = pcg (Afcn, b,[],[], M1 * M2);
%! assert (flag, 0);
%! [x, flag] = pcg (Afcn, b,[],[], M1, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (Afcn, b,[],[], M1_fcn, M2);
%! assert (flag, 0);
%! [x, flag] = pcg (Afcn, b,[],[], M1, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = pcg (Afcn, b,[],[], M1_fcn, M2_fcn);
%! assert (flag, 0);
%!test
%! ## solve a small diagonal system
%! N = 10;
%! A = diag ([1:N]); b = rand (N, 1);
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);
%!test
%! ## A is not positive definite
%! ## The indefiniteness of A is detected.
%! N = 10;
%! A = -diag ([1:N]); b = sum (A, 2);
%! [x, flag] = pcg (A, b, [], N + 1);
%! assert (flag, 4);
%!test
%! ## solve tridiagonal system, do not converge in default 20 iterations
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N, 1);
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12);
%! assert (flag);
%! assert (relres >= 1.0);
%!warning <iteration converged too fast>
%! ## solve tridiagonal system with "perfect" preconditioner which converges
%! ## in one iteration, so the eigest does not work and issues a warning.
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N, 1);
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);
%!
%! assert (isnan (eigest), isnan ([NaN, NaN]));
%!test
%! ## pcg detect a non-Hermitian matrix, with a considerable imaginary part.
%! ## In this example, Matlab does not recognize the wrong type of matrix and
%! ## makes iterations until it reaches maxit.
%! N = 10;
%! A = diag (1:N) + 1e-4*i;
%! b = ones (N, 1);
%! [x, flag] = pcg (A, b, []);
%! assert (flag, 4);
%!test
%! ## The imaginary part is not influent (it is too small), so pcg doesn't stop
%! N = 10;
%! A = diag (1:N) + 1e-10*i;
%! b = ones (N, 1);
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);
%!test
%! ## pcg solves linear system with A Hermitian positive definite
%! N = 20;
%! A = sparse (toeplitz ([4, 1, zeros(1, 18)])) + ...
%! i * sparse (toeplitz ([0, 1, zeros(1, 18)], [0, -1, zeros(1,18)]));
%! b = A * ones (N, 1);
%! Hermitian_A = ishermitian (A);
%! [x, flag] = pcg (A, b, [], 2*N);
%! assert (Hermitian_A, true);
%! assert (flag, 0);
%! assert (x, ones (N, 1), -1e-4);
%!testif HAVE_CHOLMOD
%! ## pcg solves preconditioned linear system with A HPD
%! N = 20;
%! A = sparse (toeplitz ([4, 1, zeros(1, 18)])) + ...
%! i * sparse (toeplitz ([0, 1, zeros(1, 18)], [0, -1, zeros(1,18)]));
%! b = A * ones (N, 1);
%! M2 = chol (A + 0.1 * eye (N)); # Factor of a perturbed matrix
%! M = M2' * M2;
%! Hermitian_A = ishermitian (A, eps); # AVX optimization can cause matrix
%! Hermitian_M = ishermitian (M, eps); # to miss being Hermitian by eps.
%! [x, flag] = pcg (A, b, [], 2*N, M);
%! assert (Hermitian_A, true);
%! assert (Hermitian_M, true);
%! assert (flag, 0);
%! assert (x, ones (N, 1), -1e-4);
%!test
%! ## pcg recognizes that the preconditioner matrix is singular
%! N = 3;
%! A = toeplitz ([2, 1, 0]);
%! M = [1 0 0; 0 1 0; 0 0 0]; # the last row is zero
%! [x, flag] = pcg (A, ones (3, 1), [], [], M);
%! assert (flag, 2);
%!test
%! A = rand (4);
%! A = A' * A;
%! [x, flag] = pcg (A, zeros (4, 1), [], [], [], [], ones (4, 1));
%! assert (x, zeros (4, 1));
## Test return types
%!test
%! A = single (1);
%! b = 1;
%! [x, flag] = pcg (A, b);
%! assert (class (x), "single");
%!test
%! A = 1;
%! b = single (1);
%! [x, flag] = pcg (A, b);
%! assert (class (x), "single");
%!test
%! A = single (1);
%! b = single (1);
%! [x, flag] = pcg (A, b);
%! assert (class (x), "single");
%!test
%!function y = Afcn (x)
%! A = toeplitz ([2, 1, 0, 0]);
%! y = A * x;
%!endfunction
%! [x, flag] = pcg ("Afcn", [3; 4; 4; 3]);
%! assert (x, ones (4, 1), 1e-6);
%!test
%! ## unpreconditioned residual
%! A = toeplitz (sparse ([4, 1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = toeplitz (sparse ([2, 1, 0, 0, 0]));
%! [x, flag, relres] = pcg (A, b, [], 2, M);
%! assert (norm (b - A * x) / norm (b), relres, 8 * eps);
%!test <*59776>
%! A = [ 1.00000000 -0.00054274 -0.00066848;
%! -0.00054274 1.00000000 -0.00060330;
%! -0.00066848 -0.00060330 1.00000000];
%! b = [1 1 1]';
%! [x, flag, relres, iter, resvec] = pcg (A, b, 1e-6, 4, [], [], [1; 1; 1]);
%! assert (flag, 0);
%! assert (relres, resvec(2) / norm (b));
%! assert (iter, 1);
|