1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
########################################################################
##
## Copyright (C) 2004-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} pcr (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m}, @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} pcr (@dots{})
##
## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}} by
## means of the Preconditioned Conjugate Residuals iterative method.
##
## The input arguments are
##
## @itemize
## @item
## @var{A} can be either a square (preferably sparse) matrix or a function
## handle, inline function or string containing the name of a function which
## computes @code{@var{A} * @var{x}}. In principle @var{A} should be
## symmetric and non-singular; if @code{pcr} finds @var{A} to be numerically
## singular, you will get a warning message and the @var{flag} output
## parameter will be set.
##
## @item
## @var{b} is the right hand side vector.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if
## @code{norm (@var{b} - @var{A} * @var{x}) <=
## @var{tol} * norm (@var{b} - @var{A} * @var{x0})}.
## If @var{tol} is empty or is omitted, the function sets
## @code{@var{tol} = 1e-6} by default.
##
## @item
## @var{maxit} is the maximum allowable number of iterations; if @code{[]} is
## supplied for @var{maxit}, or @code{pcr} has less arguments, a default
## value equal to 20 is used.
##
## @item
## @var{m} is the (left) preconditioning matrix, so that the iteration is
## (theoretically) equivalent to solving by
## @code{pcr} @code{@var{P} * @var{x} = @var{m} \ @var{b}}, with
## @code{@var{P} = @var{m} \ @var{A}}. Note that a proper choice of the
## preconditioner may dramatically improve the overall performance of the
## method. Instead of matrix @var{m}, the user may pass a function which
## returns the results of applying the inverse of @var{m} to a vector
## (usually this is the preferred way of using the preconditioner). If
## @code{[]} is supplied for @var{m}, or @var{m} is omitted, no
## preconditioning is applied.
##
## @item
## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed
## in a proper way to any of the functions (@var{A} or @var{m}) which are
## passed to @code{pcr}. See the examples below for further details.
##
## The output arguments are
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @code{@var{A} * @var{x} = @var{b}}.
##
## @item
## @var{flag} reports on the convergence. @code{@var{flag} = 0} means the
## solution converged and the tolerance criterion given by @var{tol} is
## satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit for the
## iteration count was reached. @code{@var{flag} = 3} reports a @code{pcr}
## breakdown, see [1] for details.
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} is the actual number of iterations performed.
##
## @item
## @var{resvec} describes the convergence history of the method, so that
## @code{@var{resvec} (i)} contains the Euclidean norms of the residual after
## the (@var{i}-1)-th iteration, @code{@var{i} = 1,2, @dots{}, @var{iter}+1}.
## @end itemize
##
## Let us consider a trivial problem with a diagonal matrix (we exploit the
## sparsity of A)
##
## @example
## @group
## n = 10;
## A = sparse (diag (1:n));
## b = rand (N, 1);
## @end group
## @end example
##
## @sc{Example 1:} Simplest use of @code{pcr}
##
## @example
## x = pcr (A, b)
## @end example
##
## @sc{Example 2:} @code{pcr} with a function which computes
## @code{@var{A} * @var{x}}.
##
## @example
## @group
## function y = apply_a (x)
## y = [1:10]' .* x;
## endfunction
##
## x = pcr ("apply_a", b)
## @end group
## @end example
##
## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The
## preconditioner (quite strange, because even the original matrix
## @var{A} is trivial) is defined as a function
##
## @example
## @group
## function y = apply_m (x)
## k = floor (length (x) - 2);
## y = x;
## y(1:k) = x(1:k) ./ [1:k]';
## endfunction
##
## [x, flag, relres, iter, resvec] = ...
## pcr (A, b, [], [], "apply_m")
## semilogy ([1:iter+1], resvec);
## @end group
## @end example
##
## @sc{Example 4:} Finally, a preconditioner which depends on a
## parameter @var{k}.
##
## @example
## @group
## function y = apply_m (x, varargin)
## k = varargin@{1@};
## y = x;
## y(1:k) = x(1:k) ./ [1:k]';
## endfunction
##
## [x, flag, relres, iter, resvec] = ...
## pcr (A, b, [], [], "apply_m"', [], 3)
## @end group
## @end example
##
## Reference:
##
## @nospell{W. Hackbusch}, @cite{Iterative Solution of Large Sparse
## Systems of Equations}, section 9.5.4; @nospell{Springer}, 1994
##
## @seealso{sparse, pcg}
## @end deftypefn
function [x, flag, relres, iter, resvec] = pcr (A, b, tol, maxit, m, x0, varargin)
breakdown = false;
if (nargin < 6 || isempty (x0))
x = zeros (size (b));
else
x = x0;
endif
if (nargin < 5)
m = [];
endif
if (nargin < 4 || isempty (maxit))
maxit = 20;
endif
maxit += 2;
if (nargin < 3 || isempty (tol))
tol = 1e-6;
endif
if (nargin < 2)
print_usage ();
endif
## init
if (isnumeric (A)) # is A a matrix?
r = b - A*x;
else # then A should be a function!
r = b - feval (A, x, varargin{:});
endif
if (isnumeric (m)) # is M a matrix?
if (isempty (m)) # if M is empty, use no precond
p = r;
else # otherwise, apply the precond
p = m \ r;
endif
else # then M should be a function!
p = feval (m, r, varargin{:});
endif
iter = 2;
b_bot_old = 1;
q_old = p_old = s_old = zeros (size (x));
if (isnumeric (A)) # is A a matrix?
q = A * p;
else # then A should be a function!
q = feval (A, p, varargin{:});
endif
resvec(1) = abs (norm (r));
## iteration
while (resvec(iter-1) > tol*resvec(1) && iter < maxit)
if (isnumeric (m)) # is M a matrix?
if (isempty (m)) # if M is empty, use no precond
s = q;
else # otherwise, apply the precond
s = m \ q;
endif
else # then M should be a function!
s = feval (m, q, varargin{:});
endif
b_top = r' * s;
b_bot = q' * s;
if (b_bot == 0.0)
breakdown = true;
break;
endif
lambda = b_top / b_bot;
x += lambda*p;
r -= lambda*q;
if (isnumeric (A)) # is A a matrix?
t = A*s;
else # then A should be a function!
t = feval (A, s, varargin{:});
endif
alpha0 = (t'*s) / b_bot;
alpha1 = (t'*s_old) / b_bot_old;
p_temp = p;
q_temp = q;
p = s - alpha0*p - alpha1*p_old;
q = t - alpha0*q - alpha1*q_old;
s_old = s;
p_old = p_temp;
q_old = q_temp;
b_bot_old = b_bot;
resvec(iter) = abs (norm (r));
iter += 1;
endwhile
flag = 0;
relres = resvec(iter-1) ./ resvec(1);
iter -= 2;
if (iter >= maxit-2)
flag = 1;
if (nargout < 2)
warning ("pcr: maximum number of iterations (%d) reached\n", iter);
warning ("pcr: the initial residual norm was reduced %g times\n",
1.0/relres);
endif
elseif (nargout < 2 && ! breakdown)
fprintf (stderr, "pcr: converged in %d iterations. \n", iter);
fprintf (stderr, "pcr: the initial residual norm was reduced %g times\n",
1.0 / relres);
endif
if (breakdown)
flag = 3;
if (nargout < 2)
warning ("pcr: breakdown occurred:\n");
warning ("system matrix singular or preconditioner indefinite?\n");
endif
endif
endfunction
%!demo
%! ## Simplest usage of PCR (see also 'help pcr')
%!
%! N = 20;
%! A = diag (linspace (-3.1,3,N)); b = rand (N,1);
%! y = A \ b; # y is the true solution
%! x = pcr (A,b);
%! printf ("The solution relative error is %g\n", norm (x-y) / norm (y));
%!
%! ## You shouldn't be afraid if PCR issues some warning messages in this
%! ## example: watch out in the second example, why it takes N iterations
%! ## of PCR to converge to (a very accurate, by the way) solution.
%!demo
%! ## Full output from PCR
%! ## We use this output to plot the convergence history
%!
%! N = 20;
%! A = diag (linspace (-3.1,30,N)); b = rand (N,1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter, resvec] = pcr (A,b);
%! printf ("The solution relative error is %g\n", norm (x-X) / norm (X));
%! clf;
%! title ("Convergence history");
%! xlabel ("Iteration"); ylabel ("log (||b-Ax||/||b||)");
%! semilogy ([0:iter], resvec/resvec(1), "o-g;relative residual;");
%!demo
%! ## Full output from PCR
%! ## We use indefinite matrix based on the Hilbert matrix, with one
%! ## strongly negative eigenvalue
%! ## Hilbert matrix is extremely ill conditioned, so is ours,
%! ## and that's why PCR WILL have problems
%!
%! N = 10;
%! A = hilb (N); A(1,1) = -A(1,1); b = rand (N,1);
%! X = A \ b; # X is the true solution
%! printf ("Condition number of A is %g\n", cond (A));
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],200);
%! if (flag == 3)
%! printf ("PCR breakdown. System matrix is [close to] singular\n");
%! endif
%! clf;
%! title ("Convergence history");
%! xlabel ("Iteration"); ylabel ("log (||b-Ax||)");
%! semilogy ([0:iter], resvec, "o-g;absolute residual;");
%!demo
%! ## Full output from PCR
%! ## We use an indefinite matrix based on the 1-D Laplacian matrix for A,
%! ## and here we have cond (A) = O(N^2)
%! ## That's the reason we need some preconditioner; here we take
%! ## a very simple and not powerful Jacobi preconditioner,
%! ## which is the diagonal of A.
%!
%! ## Note that we use here indefinite preconditioners!
%!
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%!
%! A = [A, zeros(size(A)); zeros(size(A)), -A];
%! b = rand (2*N,1);
%! X = A \ b; # X is the true solution
%! maxit = 80;
%! printf ("System condition number is %g\n", cond (A));
%! ## No preconditioner: the convergence is very slow!
%!
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],maxit);
%! clf;
%! title ("Convergence history");
%! xlabel ("Iteration"); ylabel ("log (||b-Ax||)");
%! semilogy ([0:iter], resvec, "o-g;NO preconditioning: absolute residual;");
%!
%! pause (1);
%! ## Test Jacobi preconditioner: it will not help much!!!
%!
%! M = diag (diag (A)); # Jacobi preconditioner
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],maxit,M);
%! hold on;
%! semilogy ([0:iter],resvec,"o-r;JACOBI preconditioner: absolute residual;");
%!
%! pause (1);
%! ## Test nonoverlapping block Jacobi preconditioner: this one should give
%! ## some convergence speedup!
%!
%! M = zeros (N,N); k = 4;
%! for i=1:k:N # get k x k diagonal blocks of A
%! M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1);
%! endfor
%! M = [M, zeros(size (M)); zeros(size(M)), -M];
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],maxit,M);
%! semilogy ([0:iter], resvec, "o-b;BLOCK JACOBI preconditioner: absolute residual;");
%! hold off;
%!test
%! ## solve small indefinite diagonal system
%!
%! N = 10;
%! A = diag (linspace (-10.1,10,N)); b = ones (N,1);
%! X = A \ b; # X is the true solution
%! [x, flag] = pcr (A,b,[],N+1);
%! assert (norm (x-X) / norm (X) < 1e-10);
%! assert (flag, 0);
%!test
%! ## solve tridiagonal system, do not converge in default 20 iterations
%! ## should perform max allowable default number of iterations
%!
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N,1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter, resvec] = pcr (A,b,1e-12);
%! assert (flag, 1);
%! assert (relres > 0.6);
%! assert (iter, 20);
%!test
%! ## solve tridiagonal system with "perfect" preconditioner
%! ## converges in one iteration
%!
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N,1);
%! X = A \ b; # X is the true solution
%! [x, flag, relres, iter] = pcr (A,b,[],[],A,b);
%! assert (norm (x-X) / norm (X) < 1e-6);
%! assert (relres < 1e-6);
%! assert (flag, 0);
%! assert (iter, 1); # should converge in one iteration
|